Why is $\sqrt{8}/2$ equal to $\sqrt{2}$?
I am a bit surprised that nobody suggested $$\left({\frac{\sqrt 8}2}\right)^2 = \frac{{\left(\sqrt 8\right)}^2}{2^2} = \frac84 = 2. $$
It isn't, as originally written. To see why the fixed version is correct, we have:
$$\frac{\sqrt{8}}2=\frac{\sqrt{4\cdot2}}2=\frac{\sqrt{4}\sqrt{2}}2=\frac{2\sqrt{2}}2=\sqrt{2}.$$
It’s simple:
$$\frac{\sqrt{8}}{2} = \frac{\sqrt{2 \cdot 2 \cdot 2}}{\sqrt{2 \cdot 2}} = \sqrt{2}$$
:)