Why is "Unable to find encoder for type stored in a Dataset" when creating a dataset of custom case class?
Spark Datasets
require Encoders
for data type which is about to be stored. For common types (atomics, product types) there is a number of predefined encoders available but you have to import these first from SparkSession.implicits
to make it work:
val sparkSession: SparkSession = ???
import sparkSession.implicits._
val dataset = sparkSession.createDataset(dataList)
Alternatively you can provide directly an explicit
import org.apache.spark.sql.{Encoder, Encoders}
val dataset = sparkSession.createDataset(dataList)(Encoders.product[SimpleTuple])
or implicit
implicit val enc: Encoder[SimpleTuple] = Encoders.product[SimpleTuple]
val dataset = sparkSession.createDataset(dataList)
Encoder
for the stored type.
Note that Encoders
also provide a number of predefined Encoders
for atomic types, and Encoders
for complex ones, can derived with ExpressionEncoder
.
Further reading:
- For custom objects which are not covered by built-in encoders see How to store custom objects in Dataset?
- For
Row
objects you have to provideEncoder
explicitly as shown in Encoder error while trying to map dataframe row to updated row - For debug cases, case class must be defined outside of the Main https://stackoverflow.com/a/34715827/3535853
For other users (yours is correct), note that you it's also important that the case class
is defined outside of the object
scope. So:
Fails:
object DatasetTest {
case class SimpleTuple(id: Int, desc: String)
val dataList = List(
SimpleTuple(5, "abc"),
SimpleTuple(6, "bcd")
)
def main(args: Array[String]): Unit = {
val sparkSession = SparkSession.builder
.master("local")
.appName("example")
.getOrCreate()
val dataset = sparkSession.createDataset(dataList)
}
}
Add the implicits, still fails with the same error:
object DatasetTest {
case class SimpleTuple(id: Int, desc: String)
val dataList = List(
SimpleTuple(5, "abc"),
SimpleTuple(6, "bcd")
)
def main(args: Array[String]): Unit = {
val sparkSession = SparkSession.builder
.master("local")
.appName("example")
.getOrCreate()
import sparkSession.implicits._
val dataset = sparkSession.createDataset(dataList)
}
}
Works:
case class SimpleTuple(id: Int, desc: String)
object DatasetTest {
val dataList = List(
SimpleTuple(5, "abc"),
SimpleTuple(6, "bcd")
)
def main(args: Array[String]): Unit = {
val sparkSession = SparkSession.builder
.master("local")
.appName("example")
.getOrCreate()
import sparkSession.implicits._
val dataset = sparkSession.createDataset(dataList)
}
}
Here's the relevant bug: https://issues.apache.org/jira/browse/SPARK-13540, so hopefully it will be fixed in the next release of Spark 2.
(Edit: Looks like that bugfix is actually in Spark 2.0.0... So I'm not sure why this still fails).