Why not use the Lagrangian, instead of the Hamiltonian, in nonrelativistic QM?

In order to use Lagrangians in QM, one has to use the path integral formalism. This is usually not covered in a undergrad QM course and therefore only Hamiltonians are used. In current research, Lagrangians are used a lot in non-relativistic QM.

In relativistic QM, one uses both Hamiltonians and Lagrangians. The reason Lagrangians are more popular is that it sets time and spacial coordinates on the same footing, which makes it possible to write down relativistic theories in a covariant way. Using Hamiltonians, relativistic invariance is not explicit and it can complicate many things.

So both formalism are used in both relativistic and non-relativistic quantum physics. This is the very short answer.


As Weinberg points in his QFT book, in the Hamiltonian formalism it is easier to check the unitarity of the theory because unitarity is directly related to evolution, while in the Lagrangian formalism the symmetries that mix space with time are more explicit. Therefore the Hamiltonian formalism is usually more convenient in non-relativistic and galilean quantum theories.


I would say because of the way you efficiently solve problems as well as pedagogy. Both are used in both cases though.

The Hamiltonian operator approach emphasises the spectrum aspects of quantum mechanics, which the student is introduced to at this point $-$ but here is a Lagrangian

$$\mathcal{L}\left(\psi, \mathbf{\nabla}\psi, \dot{\psi}\right) = \mathrm i\hbar\, \frac{1}{2} (\psi^{*}\dot{\psi}-\dot{\psi^{*}}\psi) - \frac{\hbar^2}{2m} \mathbf{\nabla}\psi^{*} \mathbf{\nabla}\psi - V( \mathbf{r},t)\,\psi^{*}\psi$$

for the Schrödinger equation $$\frac{\partial \mathcal{L}}{\partial \psi^{*}} - \frac{\partial}{\partial t} \frac{\partial \mathcal{L}}{\partial\frac{\partial \psi^{*}}{\partial t}} - \sum_{j=1}^3 \frac{\partial}{\partial x_j} \frac{\partial \mathcal{L}}{\partial\frac{\partial \psi^{*}}{\partial x_j}} = 0.$$

The Lagrangian (density) is especially relevant for the path integral formulation, and in some way closer to bring out symmetries of a field theory. Noether theorem and so on. $-$ but I remember Peskin & Schröders book on quantum field theory starts out with the Hamiltonian approach and introduces path integral methods only 300 pages in.