Will I tip over?

JavaScript (ES6), 116 111 108 106 bytes

-5 bytes by summing via eval(array.join`+`) instead of array.reduce().
-3 bytes by defaulting to 1 instead of 32 - 31, allowing parentheses to be removed.
-2 bytes since pivot point is the length of the last line - 1


Outputs -1, 0, or 1, for left, balanced, or right, respectively. Ended up similar to Chas Brown's python answer, so credit goes there.

Can save 4 bytes if the first line is padded to match the length of the rod by using

Test Snippet

Includes additional output (Left/Balanced/Right) along with the number.

<textarea id=I rows=3 cols=20></textarea><br><button onclick="O.value=I.value?`${x=f(I.value)} (${['Left','Balanced','Right'][x+1]})`:''">Run</button> <input id=O disabled>

Another 106 byte method


Instead of joining an array on +s, we create a string of numbers, each prefixed by +. The leading + gets ignored.

Python 2, 112 110 bytes

def f(s):w,b,p=s.split('\n');return cmp(sum((ord((w+' '*-~i)[i])-31)*(i-p.find('|'))for i in range(len(b))),0)

Try it online!

EDIT: Finally managed to eliminate the enumerate and rjust for a measly 2 bytes... meh!

Takes in a string; outputs -1,0, or 1 for falls left, balances, falls right, respectively.

First pass at 112 bytes was:

def f(s):w,b,p=s.split('\n');return cmp(sum((ord(c)-31)*(i-p.find('|'))for i,c in enumerate(w.rjust(len(b))),0)

Haskell, 212 171 bytes (188 if take input as one string)

x#p=sum(zipWith(\c w->(max(fromEnum c-32)0)*w)x(x!p))+sum(x!p)

171 bytes variant

r a b c=signum(take(b?'=')(a++repeat ' ')#(c?' '))

188 bytes variant

x%y=lines x!!y
r i=signum(take(i%1?'=')(i%0++repeat ' ')#(i%2?' '))


o!p=map(fst)(zip[p-0,p-1..]o)        Creates weights coefs list. 
                                     o - list, p - pivot position
                                     for list "abcdf" and p=3 (pivot under 'd')
                                     outputs [3,2,1,0,-1]

x#p                                  Calculates total balance
                                     x-list of "objects" on lever, p-pivot place
  sum(zipWith                        sum of zipped lists
   (\c w->(max(fromEnum c-32)0)*w)   weight of ascii "object" times
                                     distance from pivot
    x(x!p))                          x-ascii objects, 
                                     (x!p)-distances list(weight coefs)
  +sum(x!p)                          balance of lever ("==") itself

x?c=length(takeWhile(==c)x)          length of list before non c element met
                                     used to find '|' position
                                     and length of "===" lever
                                     before right whitespaces met

r a b c=                             Sums it all up =)
                                     a-ascii objects, b-lever, c-pivot line
   signum(                           1-tips left, 0-balance, -1-tips right
     take(b?'=')(a++repeat ' ')      takes all object on lever 
                                     plus whitespaces up to length of the lever
      #                              calculate the balance
       (c?' ')                       determine place of pivot