Will scikit-learn utilize GPU?

I'm experimenting with a drop-in solution (h2o4gpu) to take advantage of GPU acceleration in particular for Kmeans:

try this:

from h2o4gpu.solvers import KMeans
#from sklearn.cluster import KMeans

as of now, version 0.3.2 still don't have .inertia_ but I think it's in their TODO list.

EDIT: Haven't tested yet, but scikit-cuda seems to be getting traction.

EDIT: RAPIDS is really the way to go here.


Tensorflow only uses GPU if it is built against Cuda and CuDNN. By default it does not use GPU, especially if it is running inside Docker, unless you use nvidia-docker and an image with a built-in support.

Scikit-learn is not intended to be used as a deep-learning framework and it does not provide any GPU support.

Why is there no support for deep or reinforcement learning / Will there be support for deep or reinforcement learning in scikit-learn?

Deep learning and reinforcement learning both require a rich vocabulary to define an architecture, with deep learning additionally requiring GPUs for efficient computing. However, neither of these fit within the design constraints of scikit-learn; as a result, deep learning and reinforcement learning are currently out of scope for what scikit-learn seeks to achieve.

Extracted from http://scikit-learn.org/stable/faq.html#why-is-there-no-support-for-deep-or-reinforcement-learning-will-there-be-support-for-deep-or-reinforcement-learning-in-scikit-learn

Will you add GPU support in scikit-learn?

No, or at least not in the near future. The main reason is that GPU support will introduce many software dependencies and introduce platform specific issues. scikit-learn is designed to be easy to install on a wide variety of platforms. Outside of neural networks, GPUs don’t play a large role in machine learning today, and much larger gains in speed can often be achieved by a careful choice of algorithms.

Extracted from http://scikit-learn.org/stable/faq.html#will-you-add-gpu-support