Working with TIFFs (import, export) in Python using numpy
You could also use GDAL to do this. I realize that it is a geospatial toolkit, but nothing requires you to have a cartographic product.
Link to precompiled GDAL binaries for windows (assuming windows here) Link
To access the array:
from osgeo import gdal
dataset = gdal.Open("path/to/dataset.tiff", gdal.GA_ReadOnly)
for x in range(1, dataset.RasterCount + 1):
band = dataset.GetRasterBand(x)
array = band.ReadAsArray()
First, I downloaded a test TIFF image from this page called a_image.tif
. Then I opened with PIL like this:
>>> from PIL import Image
>>> im = Image.open('a_image.tif')
>>> im.show()
This showed the rainbow image. To convert to a numpy array, it's as simple as:
>>> import numpy
>>> imarray = numpy.array(im)
We can see that the size of the image and the shape of the array match up:
>>> imarray.shape
(44, 330)
>>> im.size
(330, 44)
And the array contains uint8
values:
>>> imarray
array([[ 0, 1, 2, ..., 244, 245, 246],
[ 0, 1, 2, ..., 244, 245, 246],
[ 0, 1, 2, ..., 244, 245, 246],
...,
[ 0, 1, 2, ..., 244, 245, 246],
[ 0, 1, 2, ..., 244, 245, 246],
[ 0, 1, 2, ..., 244, 245, 246]], dtype=uint8)
Once you're done modifying the array, you can turn it back into a PIL image like this:
>>> Image.fromarray(imarray)
<Image.Image image mode=L size=330x44 at 0x2786518>
I use matplotlib for reading TIFF files:
import matplotlib.pyplot as plt
I = plt.imread(tiff_file)
and I
will be of type ndarray
.
According to the documentation though it is actually PIL that works behind the scenes when handling TIFFs as matplotlib only reads PNGs natively, but this has been working fine for me.
There's also a plt.imsave
function for saving.