A Hard Geometry Problem on circle
Without loss of generality, we can consider $R=OC=OB=1$.
From $\Delta OBC: \frac{OB}{\sin20}=\frac{BC}{\sin140}\Rightarrow BC=\frac{\sin140}{\sin20}=2\cos20.$
From $\Delta BCD: \frac{BC}{\sin110}=\frac{CD}{\sin30}\Rightarrow CD=\frac{\cos20}{\sin110}=1.$
Finally from $\Delta OCD: \frac{OC}{\sin{x}}=\frac{CD}{\sin{(x+20)}}\Rightarrow \sin x=\sin{(x+20)}\Rightarrow x=80.$
Join OA and AC
angle AOC = 2xangle ABC=60 deg (center angle and circumference angle)
OC=OA (radii)
Triangle OAC is equilateral
AC=OA=OC
angle CAB =180-30-80=70 deg
angle CDA=40+30=70 deg
Therefore CA=CD=CO
ANGLE ODC=angle BAC+angle ABC
Angle ODC=(180-100)=80°
●
● ● ANGLE ODC IS 80°