A^k for matrix multiplication in R?
If A
is diagonizable, you could use eigenvalue decomposition:
matrix.power <- function(A, n) { # only works for diagonalizable matrices
e <- eigen(A)
M <- e$vectors # matrix for changing basis
d <- e$values # eigen values
return(M %*% diag(d^n) %*% solve(M))
}
When A is not diagonalizable, the matrix M
(matrix of eigenvectors) is singular. Thus, using it with A = matrix(c(0,1,0,0),2,2)
would give Error in solve.default(M) : system is computationally singular
.
The expm
package has an %^%
operator:
library("sos")
findFn("{matrix power}")
install.packages("expm")
library("expm")
?matpow
set.seed(10);t(matrix(rnorm(16),ncol=4,nrow=4))->a
a%^%8
Although Reduce
is more elegant, a for-loop solution is faster and seems to be as fast as expm::%^%
m1 <- matrix(1:9, 3)
m2 <- matrix(1:9, 3)
m3 <- matrix(1:9, 3)
system.time(replicate(1000, Reduce("%*%" , list(m1,m1,m1) ) ) )
# user system elapsed
# 0.026 0.000 0.037
mlist <- list(m1,m2,m3)
m0 <- diag(1, nrow=3,ncol=3)
system.time(replicate(1000, for (i in 1:3 ) {m0 <- m0 %*% m1 } ) )
# user system elapsed
# 0.013 0.000 0.014
library(expm) # and I think this may be imported with pkg:Matrix
system.time(replicate(1000, m0%^%3))
# user system elapsed
#0.011 0.000 0.017
On the other hand the matrix.power solution is much, much slower:
system.time(replicate(1000, matrix.power(m1, 4)) )
user system elapsed
0.677 0.013 1.037
@BenBolker is correct (yet again). The for-loop appears linear in time as the exponent rises whereas the expm::%^% function appears to be even better than log(exponent).
> m0 <- diag(1, nrow=3,ncol=3)
> system.time(replicate(1000, for (i in 1:400 ) {m0 <- m0 %*% m1 } ) )
user system elapsed
0.678 0.037 0.708
> system.time(replicate(1000, m0%^%400))
user system elapsed
0.006 0.000 0.006