a recursive Fibonacci function in Clojure
To answer you first question:
(defn fib
([n]
(fib [0 1] n))
([x, n]
(if (< (count x) n)
(fib (conj x (+ (last x) (nth x (- (count x) 2)))) n)
x)))
This type of function definition is called multi-arity function definition. You can learn more about it here: http://clojure.org/functional_programming
As for a better Fib function, I think your fib3 function is quite awesome and shows off a lot of functional programming concepts.
This is fast and cool:
(def fib (lazy-cat [0 1] (map + fib (rest fib))))
from: http://squirrel.pl/blog/2010/07/26/corecursion-in-clojure/
You can use the thrush operator to clean up #3 a bit (depending on who you ask; some people love this style, some hate it; I'm just pointing out it's an option):
(defn fib [n]
(->> [0 1]
(iterate (fn [[a b]] [b (+ a b)]))
(map first)
(take n)))
That said, I'd probably extract the (take n)
and just have the fib
function be a lazy infinite sequence.
(def fib
(->> [0 1]
(iterate (fn [[a b]] [b (+ a b)]))
(map first)))
;;usage
(take 10 fib)
;;output (0 1 1 2 3 5 8 13 21 34)
(nth fib 9)
;; output 34
In Clojure it's actually advisable to avoid recursion and instead use the loop
and recur
special forms. This turns what looks like a recursive process into an iterative one, avoiding stack overflows and improving performance.
Here's an example of how you'd implement a Fibonacci sequence with this technique:
(defn fib [n]
(loop [fib-nums [0 1]]
(if (>= (count fib-nums) n)
(subvec fib-nums 0 n)
(let [[n1 n2] (reverse fib-nums)]
(recur (conj fib-nums (+ n1 n2)))))))
The loop
construct takes a series of bindings, which provide initial values, and one or more body forms. In any of these body forms, a call to recur
will cause the loop to be called recursively with the provided arguments.