Add a sequence number to each element in a group using python
I stumbled upon the answer which was embarrassingly simple. The groupby statement has a 'cumcount()' option which will enumerate group items.
df['sequence']=df.groupby('patient').cumcount()
The caveat is that the records have to be in the order you want them enumerated.
Firstly you want to convert the date column to be a pandas datetime (rather than strings):
In [11]: pd.to_datetime(df['date'], format='%d%b%Y')
Out[11]:
0 2009-06-20
1 2009-06-24
2 2009-07-15
3 2008-02-09
4 2008-02-21
5 2010-03-14
6 2010-05-02
7 2010-05-12
Name: date, dtype: datetime64[ns]
Note: see docs for possible format options.
In [12]: df['date'] = pd.to_datetime(df['date'], format='%d%b%Y')
In [13]: df
Out[13]:
patient date sequence
0 145 2009-06-20 1
1 145 2009-06-24 2
2 145 2009-07-15 3
3 582 2008-02-09 1
4 582 2008-02-21 2
5 987 2010-03-14 1
6 987 2010-05-02 2
7 987 2010-05-12 3
If this isn't in date order (for each patient), I would sort it first:
In [14]: df = df.sort('date')
Now you can groupby and cumcount:
In [15]: g = df.groupby('patient')
In [16]: g.cumcount() + 1
Out[16]:
2 1
3 2
0 1
1 2
4 1
5 2
6 3
dtype: int64
Which is what you want (althout it's out of order):
In [17]: df['sequence'] = g.cumcount() + 1
In [18]: df
Out[18]:
patient date sequence
2 582 2008-02-09 1
3 582 2008-02-21 2
0 145 2009-06-24 1
1 145 2009-07-15 2
4 987 2010-03-14 1
5 987 2010-05-02 2
6 987 2010-05-12 3
To rearrange (though you may not need to) use sort_index
(or we could reindex if we saved the initial DataFrame's index):*
In [19]: df.sort_index()
Out[19]:
patient date sequence
0 145 2009-06-24 1
1 145 2009-07-15 2
2 582 2008-02-09 1
3 582 2008-02-21 2
4 987 2010-03-14 1
5 987 2010-05-02 2
6 987 2010-05-12 3