Calculation of the n-th central moment of the normal distribution $\mathcal{N}(\mu,\sigma^2)$
The $n$-th central moment $\hat{m}_n = \mathbb{E}\left( \left(X-\mathbb{E}(X)\right)^n \right)$. Notice that for the normal distribution $\mathbb{E}(X) = \mu$, and that $Y = X-\mu$ also follows a normal distribution, with zero mean and the same variance $\sigma^2$ as $X$.
Therefore, finding the central moment of $X$ is equivalent to finding the raw moment of $Y$.
In other words, $$ \begin{eqnarray} \hat{m}_n &=& \mathbb{E}\left( \left(X-\mathbb{E}(X)\right)^n \right) = \mathbb{E}\left( \left(X-\mu\right)^n \right) = \int_{-\infty}^\infty \frac{1}{\sqrt{2\pi} \sigma} (x-\mu)^n \mathrm{e}^{-\frac{(x-\mu)^2}{2 \sigma^2}} \mathrm{d} x\\ & \stackrel{y=x-\mu}{=}& \int_{-\infty}^\infty \frac{1}{\sqrt{2\pi} \sigma} y^n \mathrm{e}^{-\frac{y^2}{2 \sigma^2}} \mathrm{d} y \stackrel{y = \sigma u}{=} \int_{-\infty}^\infty \frac{1}{\sqrt{2\pi} \sigma} \sigma^n u^n \mathrm{e}^{-\frac{u^2}{2}} \sigma \mathrm{d} u \\ &=& \sigma^n \int_{-\infty}^\infty \frac{1}{\sqrt{2\pi} } u^n \mathrm{e}^{-\frac{u^2}{2}} \mathrm{d} u \end{eqnarray} $$ The latter integral is zero for odd $n$ as it is the integral of an odd function over a real line. So consider $$ \begin{eqnarray} && \int_{-\infty}^\infty \frac{1}{\sqrt{2\pi} } u^{2n} \mathrm{e}^{-\frac{u^2}{2}} \mathrm{d} u = 2 \int_{0}^\infty \frac{1}{\sqrt{2\pi} } u^{2n} \mathrm{e}^{-\frac{u^2}{2}} \mathrm{d} u \\ && \stackrel{u=\sqrt{2 w}}{=} \frac{2}{\sqrt{2\pi}} \int_0^\infty (2 w)^n \mathrm{e}^{-w} \frac{\mathrm{d} w }{\sqrt{2 w}} = \frac{2^n}{\sqrt{\pi}} \int_0^\infty w^{n-1/2} \mathrm{e}^{-w} \mathrm{d} w = \frac{2^n}{\sqrt{\pi}} \Gamma\left(n+\frac{1}{2}\right) \end{eqnarray} $$ where $\Gamma(x)$ stands for the Euler's Gamma function. Using its properties we get $$ \hat{m}_{2n} = \sigma^{2n} (2n-1)!! \qquad\qquad \hat{m}_{2n+1} = 0 $$