Categorical features correlation

There is a way to calculate the correlation coefficient without one-hot encoding the category variable. Cramers V statistic is one method for calculating the correlation of categorical variables. It can be calculated as follows. The following link is helpful. Using pandas, calculate Cramér's coefficient matrix For variables with other continuous values, you can categorize by using cut of pandas.

import numpy as np
import pandas as pd
import scipy.stats as ss
import seaborn as sns

print('Pandas version:', pd.__version__)
# Pandas version: 1.3.0

tips = sns.load_dataset("tips")

tips["total_bill_cut"] = pd.cut(tips["total_bill"],
                                np.arange(0, 55, 5),
                                include_lowest=True,
                                right=False)

def cramers_v(confusion_matrix):
    """ calculate Cramers V statistic for categorial-categorial association.
        uses correction from Bergsma and Wicher,
        Journal of the Korean Statistical Society 42 (2013): 323-328
    """
    chi2 = ss.chi2_contingency(confusion_matrix)[0]
    n = confusion_matrix.sum()
    phi2 = chi2 / n
    r, k = confusion_matrix.shape
    phi2corr = max(0, phi2 - ((k-1)*(r-1))/(n-1))
    rcorr = r - ((r-1)**2)/(n-1)
    kcorr = k - ((k-1)**2)/(n-1)
    return np.sqrt(phi2corr / min((kcorr-1), (rcorr-1)))

confusion_matrix = pd.crosstab(tips["day"], tips["time"])
cramers_v(confusion_matrix.values)
# Out[2]: 0.9386619340722221

confusion_matrix = pd.crosstab(tips["total_bill_cut"], tips["time"])
cramers_v(confusion_matrix.values)
# Out[3]: 0.1649870749498837

please note the .as_matrix() is deprecated in pandas since verison 0.23.0 . use .values instead


I found phik library quite useful in calculating correlation between categorical and interval features. This is also useful for binning numerical features. Try this once: phik documentation