Cleaning up captcha image
Here is a C# solution using OpenCvSharp (which should be easy to convert back to python/c++ because the method names are exactly the same).
It uses OpenCV's inpainting technique to avoid destroying too much of the letters before possibly running an OCR phase. We can see that the lines have a different color than the rest, so we'll use that information very early, before any grayscaling/blackwhiting. Steps are as follow:
- build a mask from the lines using their color (#707070)
- dilate that mask a bit because the lines may have been drawn with antialiasing
- repaint ("inpaint") the original image using this mask, which will remove the lines while preserving most of what was below the lines (letters). Note we could remove the small points before that step, I think it would be even better
- apply some dilate/blur/threshold to finalize
Here is the mask:
Here is the result:
Here is the result on sample set:
Here is the C# code:
static void Decaptcha(string filePath)
{
// load the file
using (var src = new Mat(filePath))
{
using (var binaryMask = new Mat())
{
// lines color is different than text
var linesColor = Scalar.FromRgb(0x70, 0x70, 0x70);
// build a mask of lines
Cv2.InRange(src, linesColor, linesColor, binaryMask);
using (var masked = new Mat())
{
// build the corresponding image
// dilate lines a bit because aliasing may have filtered borders too much during masking
src.CopyTo(masked, binaryMask);
int linesDilate = 3;
using (var element = Cv2.GetStructuringElement(MorphShapes.Ellipse, new Size(linesDilate, linesDilate)))
{
Cv2.Dilate(masked, masked, element);
}
// convert mask to grayscale
Cv2.CvtColor(masked, masked, ColorConversionCodes.BGR2GRAY);
using (var dst = src.EmptyClone())
{
// repaint big lines
Cv2.Inpaint(src, masked, dst, 3, InpaintMethod.NS);
// destroy small lines
linesDilate = 2;
using (var element = Cv2.GetStructuringElement(MorphShapes.Ellipse, new Size(linesDilate, linesDilate)))
{
Cv2.Dilate(dst, dst, element);
}
Cv2.GaussianBlur(dst, dst, new Size(5, 5), 0);
using (var dst2 = dst.BilateralFilter(5, 75, 75))
{
// basically make it B&W
Cv2.CvtColor(dst2, dst2, ColorConversionCodes.BGR2GRAY);
Cv2.Threshold(dst2, dst2, 255, 255, ThresholdTypes.Otsu);
// save the file
dst2.SaveImage(Path.Combine(
Path.GetDirectoryName(filePath),
Path.GetFileNameWithoutExtension(filePath) + "_dst" + Path.GetExtension(filePath)));
}
}
}
}
}
}
Take a closer look to your captcha. most of the dust in that image has a different grayscale value than the text.
The text is in 140
and the dust is in 112
.
A simple grayscale filtering will help a lot here.
from scipy.misc import imread, imsave
import numpy as np
infile = "A1nO4.png"
outfile = "A1nO4_out.png"
im = imread(infile, True)
out_im = np.ones(im.shape) * 255
out_im[im == 140] = 0
imsave(outfile, out_im)
Now use cv2.dilate
(cv2.erode
on a white on black text) to get rid of the remaining dust.