Converting ts object to data.frame
Seems that converting from xts
objects seems to be both reliable and well documented. Below works and with the new date column in date / yearqtr class.
library(xts)
datx <- as.xts(dat)
df <- data.frame(date=index(datx), coredata(datx))
Checking class of date
:
class(df$date)
[1] "yearqtr"
And result:
print(df)
date coredata.datx.
1 1959 Q2 86.04519
2 1959 Q3 93.78866
3 1959 Q4 88.04912
4 1960 Q1 94.30623
5 1960 Q2 72.82405
6 1960 Q3 58.31859
7 1960 Q4 66.25477
8 1961 Q1 75.46122
9 1961 Q2 86.38526
10 1961 Q3 99.48685
How about
data.frame(Y=as.matrix(dat), date=time(dat))
This returns
Y date
1 86.04519 1959.25
2 93.78866 1959.50
3 88.04912 1959.75
4 94.30623 1960.00
5 72.82405 1960.25
6 58.31859 1960.50
7 66.25477 1960.75
8 75.46122 1961.00
9 86.38526 1961.25
10 99.48685 1961.50
The package timetk has several conversion functions. In your case:
dat <- ts(data=runif(n=10, min=50, max=100), frequency = 4, start = c(1959, 2))
timetk::tk_tbl(dat)
# A tibble: 10 x 2
index value
<S3: yearqtr> <dbl>
1 1959 Q2 86.04519
2 1959 Q3 93.78866
3 1959 Q4 88.04912
4 1960 Q1 94.30623
5 1960 Q2 72.82405
6 1960 Q3 58.31859
7 1960 Q4 66.25477
8 1961 Q1 75.46122
9 1961 Q2 86.38526
10 1961 Q3 99.48685
yearmon
(from zoo
) allows creating Date
objects.
> dat <- ts(data=runif(n=10, min=50, max=100), frequency = 4, start = c(1959, 2))
> data.frame(Y=as.matrix(dat), date=as.Date(as.yearmon(time(dat))))
Y date
1 51.72677 1959-04-01
2 57.61867 1959-07-01
3 86.78425 1959-10-01
4 50.05683 1960-01-01
5 69.56017 1960-04-01
6 73.12473 1960-07-01
7 69.40720 1960-10-01
8 70.12426 1961-01-01
9 58.94818 1961-04-01
10 97.58294 1961-07-01