Does Fourier imply Laplace?
For instance, $f(t)=e^{-\lvert t\rvert^{1/3}}$, because $\int_{-\infty}^0 e^{-st-\lvert t\rvert^{1/3}}\,dt$ diverges for $\Re s>0$.
$f(t)=\frac 1 {1+t^{2}}$ is such a function.
For instance, $f(t)=e^{-\lvert t\rvert^{1/3}}$, because $\int_{-\infty}^0 e^{-st-\lvert t\rvert^{1/3}}\,dt$ diverges for $\Re s>0$.
$f(t)=\frac 1 {1+t^{2}}$ is such a function.