Easy OpenStreetMap tile displaying for Python
Based on your input, I was able to achive my target. Here is my code for others, which are searching a starting point to OSM. (Of course there is still much room for improvements).
Update
Please respect the usage policy of Open Street Map!
OpenStreetMap data is free for everyone to use. Our tile servers are not.
Requirements
- Heavy use (e.g. distributing an app that uses tiles from openstreetmap.org) is forbidden without prior permission from the Operations Working Group. See below for alternatives.
- Clearly display license attribution.
- Do not actively or passively encourage copyright infringement.
- Calls to /cgi-bin/export may only be triggered by direct end-user action. (For example: “click here to export”.) The export call is an expensive (CPU+RAM) function to run and will frequently reject when server is under high load.
- Recommended: Do not hardcode any URL at tile.openstreetmap.org as doing so will limit your ability to react quickly if the service is disrupted or blocked.
- Recommended: add a link to https://www.openstreetmap.org/fixthemap to allow your users to report and fix problems in our data.
Technical Usage Requirements
- Valid HTTP User-Agent identifying application. Faking another app’s User-Agent WILL get you blocked.
- If known, a valid HTTP Referer.
- DO NOT send no-cache headers. (“Cache-Control: no-cache”, “Pragma: no-cache” etc.)
- Cache Tile downloads locally according to HTTP Expiry Header, alternatively a minimum of 7 days.
- Maximum of 2 download threads. (Unmodified web browsers’ download thread limits are acceptable.)
More details see: https://operations.osmfoundation.org/policies/tiles/
Here is the code:
import matplotlib.pyplot as plt
import numpy as np
import math
import urllib2
import StringIO
from PIL import Image
def deg2num(lat_deg, lon_deg, zoom):
lat_rad = math.radians(lat_deg)
n = 2.0 ** zoom
xtile = int((lon_deg + 180.0) / 360.0 * n)
ytile = int((1.0 - math.log(math.tan(lat_rad) + (1 / math.cos(lat_rad))) / math.pi) / 2.0 * n)
return (xtile, ytile)
def num2deg(xtile, ytile, zoom):
n = 2.0 ** zoom
lon_deg = xtile / n * 360.0 - 180.0
lat_rad = math.atan(math.sinh(math.pi * (1 - 2 * ytile / n)))
lat_deg = math.degrees(lat_rad)
return (lat_deg, lon_deg)
def getImageCluster(lat_deg, lon_deg, delta_lat, delta_long, zoom):
smurl = r"http://a.tile.openstreetmap.org/{0}/{1}/{2}.png"
xmin, ymax =deg2num(lat_deg, lon_deg, zoom)
xmax, ymin =deg2num(lat_deg + delta_lat, lon_deg + delta_long, zoom)
Cluster = Image.new('RGB',((xmax-xmin+1)*256-1,(ymax-ymin+1)*256-1) )
for xtile in range(xmin, xmax+1):
for ytile in range(ymin, ymax+1):
try:
imgurl=smurl.format(zoom, xtile, ytile)
print("Opening: " + imgurl)
imgstr = urllib2.urlopen(imgurl).read()
tile = Image.open(StringIO.StringIO(imgstr))
Cluster.paste(tile, box=((xtile-xmin)*256 , (ytile-ymin)*255))
except:
print("Couldn't download image")
tile = None
return Cluster
if __name__ == '__main__':
a = getImageCluster(38.5, -77.04, 0.02, 0.05, 13)
fig = plt.figure()
fig.patch.set_facecolor('white')
plt.imshow(np.asarray(a))
plt.show()
It is not so very complex. A little bit of guidance can be obtained from this link, where the complexity of tiles are explained in detail.
It can hardly be reproduced here, but in general you have to
- determine the tiles you need by formula
- load them from their server (there is a certain choice of map styles)
- possibly concatenate them in both directions
- and then display them.
Be aware that you possibly have aspect ratio issues which you must solve as well...
Building up on BerndGit's nice answer, I add a slightly modified version which allows to display other contents together with the tiles (using Basemap). Btw I've come across a dedicated library, geotiler (http://wrobell.it-zone.org/geotiler/intro.html), but it requires Python 3.
from mpl_toolkits.basemap import Basemap
import matplotlib.pyplot as plt
import numpy as np
import math
import urllib2
import StringIO
from PIL import Image
def deg2num(lat_deg, lon_deg, zoom):
lat_rad = math.radians(lat_deg)
n = 2.0 ** zoom
xtile = int((lon_deg + 180.0) / 360.0 * n)
ytile = int((1.0 - math.log(math.tan(lat_rad) + (1 / math.cos(lat_rad))) / math.pi) / 2.0 * n)
return (xtile, ytile)
def num2deg(xtile, ytile, zoom):
"""
http://wiki.openstreetmap.org/wiki/Slippy_map_tilenames
This returns the NW-corner of the square.
Use the function with xtile+1 and/or ytile+1 to get the other corners.
With xtile+0.5 & ytile+0.5 it will return the center of the tile.
"""
n = 2.0 ** zoom
lon_deg = xtile / n * 360.0 - 180.0
lat_rad = math.atan(math.sinh(math.pi * (1 - 2 * ytile / n)))
lat_deg = math.degrees(lat_rad)
return (lat_deg, lon_deg)
def getImageCluster(lat_deg, lon_deg, delta_lat, delta_long, zoom):
smurl = r"http://a.tile.openstreetmap.org/{0}/{1}/{2}.png"
xmin, ymax = deg2num(lat_deg, lon_deg, zoom)
xmax, ymin = deg2num(lat_deg + delta_lat, lon_deg + delta_long, zoom)
bbox_ul = num2deg(xmin, ymin, zoom)
bbox_ll = num2deg(xmin, ymax + 1, zoom)
#print bbox_ul, bbox_ll
bbox_ur = num2deg(xmax + 1, ymin, zoom)
bbox_lr = num2deg(xmax + 1, ymax +1, zoom)
#print bbox_ur, bbox_lr
Cluster = Image.new('RGB',((xmax-xmin+1)*256-1,(ymax-ymin+1)*256-1) )
for xtile in range(xmin, xmax+1):
for ytile in range(ymin, ymax+1):
try:
imgurl=smurl.format(zoom, xtile, ytile)
print("Opening: " + imgurl)
imgstr = urllib2.urlopen(imgurl).read()
tile = Image.open(StringIO.StringIO(imgstr))
Cluster.paste(tile, box=((xtile-xmin)*255 , (ytile-ymin)*255))
except:
print("Couldn't download image")
tile = None
return Cluster, [bbox_ll[1], bbox_ll[0], bbox_ur[1], bbox_ur[0]]
if __name__ == '__main__':
lat_deg, lon_deg, delta_lat, delta_long, zoom = 45.720-0.04/2, 4.210-0.08/2, 0.04, 0.08, 14
a, bbox = getImageCluster(lat_deg, lon_deg, delta_lat, delta_long, zoom)
fig = plt.figure(figsize=(10, 10))
ax = plt.subplot(111)
m = Basemap(
llcrnrlon=bbox[0], llcrnrlat=bbox[1],
urcrnrlon=bbox[2], urcrnrlat=bbox[3],
projection='merc', ax=ax
)
# list of points to display (long, lat)
ls_points = [m(x,y) for x,y in [(4.228, 45.722), (4.219, 45.742), (4.221, 45.737)]]
m.imshow(a, interpolation='lanczos', origin='upper')
ax.scatter([point[0] for point in ls_points],
[point[1] for point in ls_points],
alpha = 0.9)
plt.show()