Elegant pythonic cumsum
a = [1, 2, 3 ,4, 5]
# Using list comprehention
cumsum = [sum(a[:i+1]) for i in range(len(a))] # [1, 3, 6, 10, 15]
# Using map()
cumsum = map(lambda i: sum(a[:i+1]), range(len(a))) # [1, 3, 6, 10, 15]
My idea was to use reduce in a functional manner:
from operator import iadd
reduce(lambda acc, itm: iadd(acc, [acc[-1] + itm]), [1, 2, 3, 4, 5], [0])[1:]
>>> [1, 3, 6, 10, 15]
iadd from the operator module has the unique property of doing an in-place addition and returning the destination as a result.
If that [1:] copy makes you cringe, you could likewise do:
from operator import iadd
reduce(lambda acc, itm: (iadd(acc[0], [acc[1] + itm]), acc[1] + itm),
[1, 2, 3, 4, 5], ([], 0))[0]
>>> [1, 3, 6, 10, 15]
But I discovered that locally the first example is much faster and IMO generators are more pythonic than functional programming like 'reduce':
reduce(lambda acc, itm: (iadd(acc[0], [acc[1] + itm]), acc[1] + itm), values_ten, ([], 0))[0]
Average: 6.4593828736e-06
reduce(lambda acc, itm: (iadd(acc[0], [acc[1] + itm]), acc[1] + itm), values_mil, ([], 0))[0]
Average: 0.727404361961
reduce(lambda acc, itm: iadd(acc, [acc[-1] + itm]), values_ten, [0])[1:]
Average: 5.16271911336e-06
reduce(lambda acc, itm: iadd(acc, [acc[-1] + itm]), values_mil, [0])[1:]
Average: 0.524223491301
cumsum_rking(values_ten)
Average: 1.9828751369e-06
cumsum_rking(values_mil)
Average: 0.234241141632
list(cumsum_larsmans(values_ten))
Average: 2.02786211569e-06
list(cumsum_larsmans(values_mil))
Average: 0.201473119335
Here's the benchmark script, YMMV:
from timeit import timeit
def bmark(prog, setup, number):
duration = timeit(prog, setup=setup, number=number)
print prog
print 'Average:', duration / number
values_ten = list(xrange(10))
values_mil = list(xrange(1000000))
from operator import iadd
bmark('reduce(lambda acc, itm: (iadd(acc[0], [acc[1] + itm]), acc[1] + itm), \
values_ten, ([], 0))[0]',
setup='from __main__ import iadd, values_ten', number=1000000)
bmark('reduce(lambda acc, itm: (iadd(acc[0], [acc[1] + itm]), acc[1] + itm), \
values_mil, ([], 0))[0]',
setup='from __main__ import iadd, values_mil', number=10)
bmark('reduce(lambda acc, itm: iadd(acc, [acc[-1] + itm]), \
values_ten, [0])[1:]',
setup='from __main__ import iadd, values_ten', number=1000000)
bmark('reduce(lambda acc, itm: iadd(acc, [acc[-1] + itm]), \
values_mil, [0])[1:]',
setup='from __main__ import iadd, values_mil', number=10)
def cumsum_rking(iterable):
values = list(iterable)
for pos in xrange(1, len(values)):
values[pos] += values[pos - 1]
return values
bmark('cumsum_rking(values_ten)',
setup='from __main__ import cumsum_rking, values_ten', number=1000000)
bmark('cumsum_rking(values_mil)',
setup='from __main__ import cumsum_rking, values_mil', number=10)
def cumsum_larsmans(iterable):
total = 0
for value in iterable:
total += value
yield total
bmark('list(cumsum_larsmans(values_ten))',
setup='from __main__ import cumsum_larsmans, values_ten', number=1000000)
bmark('list(cumsum_larsmans(values_mil))',
setup='from __main__ import cumsum_larsmans, values_mil', number=10)
And here's my Python version string:
Python 2.7 (r27:82525, Jul 4 2010, 09:01:59) [MSC v.1500 32 bit (Intel)] on win32
It's available in Numpy:
>>> import numpy as np
>>> np.cumsum([1,2,3,4,5])
array([ 1, 3, 6, 10, 15])
Or use itertools.accumulate
since Python 3.2:
>>> from itertools import accumulate
>>> list(accumulate([1,2,3,4,5]))
[ 1, 3, 6, 10, 15]
If Numpy is not an option, a generator loop would be the most elegant solution I can think of:
def cumsum(it):
total = 0
for x in it:
total += x
yield total
Ex.
>>> list(cumsum([1,2,3,4,5]))
>>> [1, 3, 6, 10, 15]