Enumerate factors of a number directly in ascending order without sorting?
This answer gives a C implementation that I believe is the fastest and most memory-efficient.
Overview of algorithm. This algorithm is based on the bottom-up merge approach introduced by Will Ness in another answer, but is further simplified so that the lists being merged do not actually ever exist anywhere in memory. The head element of each list is groomed and kept in a small array, while all other elements of the lists are constructed on-the-fly as needed. This use of “phantom lists”—figments of the imagination of the running code—greatly reduces the memory footprint, as well as the volume of memory accesses, both read and write, and also improves spatial locality, which in turn significantly increases the speed of the algorithm. Factors at each level are written directly into their final resting place in the output array, in order.
The basic idea is to produce the factors using mathematical induction on the prime-power factorization. For example:
- To produce the factors of 360, the factors of 72 are computed and then multiplied by the relevant powers of 5, in this case {1,5}.
- To produce the factors of 72, the factors of 8 are computed and then multiplied by the relevant powers of 3, in this case {1,3,9}.
- To produce the factors of 8, the base case 1 is multiplied by the relevant powers of 2, in this case {1,2,4,8}.
Thus, at each inductive step, a Cartesian product is calculated between sets of existing factors and sets of prime powers, and the results are reduced back to integers via multiplication.
Below is an illustration for the number 360. Shown left-to-right are memory cells; one row represents one time step. Time is represented as flowing vertically downward.
Spatial complexity. Temporary data structures to produce the factors are extremely small: only O(log₂(n)) space is used, where n is the number whose factors are being generated. For example, in the 128-bit implementation of this algorithm in C, a number such as 333,939,014,887,358,848,058,068,063,658,770,598,400 (whose base-2 logarithm is ≈127.97) allocates 5.1 GB to store the list of its 318,504,960 factors, but uses only 360 bytes of additional overhead to produce that list. At most, approximately 5 KB overhead is needed for any 128-bit number.
Runtime complexity. Runtime depends entirely on the exponents of the prime-power factorization (e.g., the prime signature). For best results, largest exponents should be processed first and smallest exponents last, so that the runtime is dominated in the final stages by low-complexity merges, which in practice often turn out to be binary merges. Asymptotic runtime is O(c(n) d(n)), where d(n) is the divisor count of n and where c(n) is some constant dependent on the prime signature of n. That is, each equivalence class associated with a prime signature has a different constant. Prime signatures dominated by small exponents have smaller constants; prime signatures dominated by large exponents have larger constants. Thus, runtime complexity is clustered by prime signature.
Graphs. Runtime performance was profiled on a 3.4 GHz. Intel Core i7 for a sampling of 66,591 values of n having d(n) factors for unique d(n) up to 160 million. The largest value of n profiled for this graph was 14,550,525,518,294,259,162,294,162,737,840,640,000, producing 159,744,000 factors in 2.35 seconds.
The number of sorted factors produced per second is essentially the inversion of the above. Clustering by prime signature is apparent in the data. Performance is also affected by L1, L2, and L3 cache sizes, as well as physical RAM limitations.
Source Code. Attached below is a working program in the C programming language (specifically, C11). It has been tested on x86-64 with Clang/LLVM, although it should work fine with GCC as well.
/*==============================================================================
DESCRIPTION
This is a small proof-of-concept program to test the idea of generating the
factors of a number in ascending order using an ultra-efficient sortless
method.
INPUT
Input is given on the command line, either as a single argument giving the
number to be factored or an even number of arguments giving the 2-tuples that
comprise the prime-power factorization of the desired number. For example,
the number
75600 = 2^4 x 3^3 x 5^2 x 7
can be given by the following list of arguments:
2 4 3 3 5 2 7 1
Note: If a single number is given, it will require factoring to produce its
prime-power factorization. Since this is just a small test program, a very
crude factoring method is used that is extremely fast for small prime factors
but extremely slow for large prime factors. This is actually fine, because
the largest factor lists occur with small prime factors anyway, and it is the
production of large factor lists at which this program aims to be proficient.
It is simply not interesting to be fast at producing the factor list of a
number like 17293823921105882610 = 2 x 3 x 5 x 576460797370196087, because
it has only 32 factors. Numbers with tens or hundreds of thousands of
factors are much more interesting.
OUTPUT
Results are written to standard output. A list of factors in ascending order
is produced, followed by runtime required to generate the list (not including
time to print it).
AUTHOR
Todd Lehman
2015/05/10
*/
//-----------------------------------------------------------------------------
#include <inttypes.h>
#include <limits.h>
#include <stdbool.h>
#include <stdlib.h>
#include <stdio.h>
#include <stdarg.h>
#include <string.h>
#include <ctype.h>
#include <time.h>
#include <math.h>
#include <assert.h>
//-----------------------------------------------------------------------------
typedef unsigned int uint;
typedef uint8_t uint8;
typedef uint16_t uint16;
typedef uint32_t uint32;
typedef uint64_t uint64;
typedef __uint128_t uint128;
#define UINT128_MAX (uint128)(-1)
#define UINT128_MAX_STRLEN 39
//-----------------------------------------------------------------------------
#define ARRAY_CAPACITY(x) (sizeof(x) / sizeof((x)[0]))
//-----------------------------------------------------------------------------
// This structure encode a single prime-power pair for the prime-power
// factorization of numbers, for example 3 to the 4th power.
#pragma pack(push, 8)
typedef struct
{
uint128 p; // Prime.
uint8 e; // Power (exponent).
}
PrimePower; // 24 bytes using 8-byte packing
#pragma pack(pop)
//-----------------------------------------------------------------------------
// Prime-power factorization structure.
//
// This structure is sufficient to represent the prime-power factorization of
// all 128-bit values. The field names ω and Ω are dervied from the standard
// number theory functions ω(n) and Ω(n), which count the number of unique and
// non-unique prime factors of n, respectively. The field name d is derived
// from the standard number theory function d(n), which counts the number of
// divisors of n, including 1 and n.
//
// The maximum possible value here of ω is 26, which occurs at
// n = 232862364358497360900063316880507363070 = 2 x 3 x 5 x 7 x 11 x 13 x 17 x
// 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53 x 59 x 61 x 67 x 71 x 73 x 79 x
// 83 x 89 x 97 x 101, which has 26 unique prime factors.
//
// The maximum possible value of Ω here is 127, which occurs at n = 2^127 and
// n = 2^126 x 3, both of which have 127 non-unique prime factors.
//
// The maximum possible value of d here is 318504960, which occurs at
// n = 333939014887358848058068063658770598400 = 2^9 x 3^5 x 5^2 x 7^2 x 11^2 x
// 13^2 x 17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53 x 59 x 61 x 67 x 71 x
// 73 x 79.
//
#pragma pack(push, 8)
typedef struct
{
PrimePower f[32]; // Primes and their exponents.
uint8 ω; // Count of prime factors without multiplicity.
uint8 Ω; // Count of prime factors with multiplicity.
uint32 d; // Count of factors of n, including 1 and n.
uint128 n; // Value of n on which all other fields depend.
}
PrimePowerFactorization; // 656 bytes using 8-byte packing
#pragma pack(pop)
#define MAX_ω 26
#define MAX_Ω 127
//-----------------------------------------------------------------------------
// Fatal error: print error message and abort.
void fatal_error(const char *format, ...)
{
va_list args;
va_start(args, format);
vfprintf(stderr, format, args);
exit(1);
}
//------------------------------------------------------------------------------
uint128 uint128_from_string(const char *const str)
{
assert(str != NULL);
uint128 n = 0;
for (int i = 0; isdigit(str[i]); i++)
n = (n * 10) + (uint)(str[i] - '0');
return n;
}
//------------------------------------------------------------------------------
void uint128_to_string(const uint128 n,
char *const strbuf, const uint strbuflen)
{
assert(strbuf != NULL);
assert(strbuflen >= UINT128_MAX_STRLEN + 1);
// Extract digits into string buffer in reverse order.
uint128 a = n;
char *s = strbuf;
do { *(s++) = '0' + (uint)(a % 10); a /= 10; } while (a != 0);
*s = '\0';
// Reverse the order of the digits.
uint l = strlen(strbuf);
for (uint i = 0; i < l/2; i++)
{ char t = strbuf[i]; strbuf[i] = strbuf[l-1-i]; strbuf[l-1-i] = t; }
// Verify result.
assert(uint128_from_string(strbuf) == n);
}
//------------------------------------------------------------------------------
char *uint128_to_static_string(const uint128 n, const uint i)
{
static char str[2][UINT128_MAX_STRLEN + 1];
assert(i < ARRAY_CAPACITY(str));
uint128_to_string(n, str[i], ARRAY_CAPACITY(str[i]));
return str[i];
}
//------------------------------------------------------------------------------
// Compute sorted list of factors, given a prime-power factorization.
uint128 *compute_factors(const PrimePowerFactorization ppf)
{
const uint128 n = ppf.n;
const uint d = (uint)ppf.d;
const uint ω = (uint)ppf.ω;
if (n == 0)
return NULL;
uint128 *factors = malloc((d + 1) * sizeof(*factors));
if (!factors)
fatal_error("Failed to allocate array of %u factors.", d);
uint128 *const factors_end = &factors[d];
// --- Seed the factors[] array.
factors_end[0] = 0; // Dummy value to simplify looping in bottleneck code.
factors_end[-1] = 1; // Seed value.
if (n == 1)
return factors;
// --- Iterate over all prime factors.
uint range = 1;
for (uint i = 0; i < ω; i++)
{
const uint128 p = ppf.f[i].p;
const uint e = ppf.f[i].e;
// --- Initialize phantom input lists and output list.
assert(e < 128);
assert(range < d);
uint128 *restrict in[128];
uint128 pe[128], f[128];
for (uint j = 0; j <= e; j++)
{
in[j] = &factors[d - range];
pe[j] = (j == 0)? 1 : pe[j-1] * p;
f[j] = pe[j];
}
uint active_list_count = 1 + e;
range *= 1 + e;
uint128 *restrict out = &factors[d - range];
// --- Merge phantom input lists to output list, until all input lists are
// extinguished.
while (active_list_count > 0)
{
if (active_list_count == 1)
{
assert(out == in[0]);
while (out != factors_end)
*(out++) *= pe[0];
in[0] = out;
}
else if (active_list_count == 2)
{
// This section of the code is the bottleneck of the entire factor-
// producing algorithm. Other portions need to be fast, but this
// *really* needs to be fast; therefore, it has been highly optimized.
// In fact, it is by far most frequently the case here that pe[0] is 1,
// so further optimization is warranted in this case.
uint128 f0 = f[0], f1 = f[1];
uint128 *in0 = in[0], *in1 = in[1];
const uint128 pe0 = pe[0], pe1 = pe[1];
if (pe[0] == 1)
{
while (true)
{
if (f0 < f1)
{ *(out++) = f0; f0 = *(++in0);
if (in0 == factors_end) break; }
else
{ *(out++) = f1; f1 = *(++in1) * pe1; }
}
}
else
{
while (true)
{
if (f0 < f1)
{ *(out++) = f0; f0 = *(++in0) * pe0;
if (in0 == factors_end) break; }
else
{ *(out++) = f1; f1 = *(++in1) * pe1; }
}
}
f[0] = f0; f[1] = f1;
in[0] = in0; in[1] = in1;
}
else if (active_list_count == 3)
{
uint128 f0 = f[0], f1 = f[1], f2 = f[2];
uint128 *in0 = in[0], *in1 = in[1], *in2 = in[2];
const uint128 pe0 = pe[0], pe1 = pe[1], pe2 = pe[2];
while (true)
{
if (f0 < f1)
{
if (f0 < f2)
{ *(out++) = f0; f0 = *(++in0) * pe0;
if (in0 == factors_end) break; }
else
{ *(out++) = f2; f2 = *(++in2) * pe2; }
}
else
{
if (f1 < f2)
{ *(out++) = f1; f1 = *(++in1) * pe1; }
else
{ *(out++) = f2; f2 = *(++in2) * pe2; }
}
}
f[0] = f0; f[1] = f1, f[2] = f2;
in[0] = in0; in[1] = in1, in[2] = in2;
}
else if (active_list_count >= 3)
{
while (true)
{
// Chose the smallest multiplier.
uint k_min = 0;
uint128 f_min = f[0];
for (uint k = 0; k < active_list_count; k++)
if (f[k] < f_min)
{ f_min = f[k]; k_min = k; }
// Write the output factor, advance the input pointer, and
// produce a new factor in the array f[] of list heads.
*(out++) = f_min;
f[k_min] = *(++in[k_min]) * pe[k_min];
if (in[k_min] == factors_end)
{ assert(k_min == 0); break; }
}
}
// --- Remove the newly emptied phantom input list. Note that this is
// guaranteed *always* to be the first remaining non-empty list.
assert(in[0] == factors_end);
for (uint j = 1; j < active_list_count; j++)
{
in[j-1] = in[j];
pe[j-1] = pe[j];
f[j-1] = f[j];
}
active_list_count -= 1;
}
assert(out == factors_end);
}
// --- Validate array of sorted factors.
#ifndef NDEBUG
{
for (uint k = 0; k < d; k++)
{
if (factors[k] == 0)
fatal_error("Produced a factor of 0 at index %u.", k);
if (n % factors[k] != 0)
fatal_error("Produced non-factor %s at index %u.",
uint128_to_static_string(factors[k], 0), k);
if ((k > 0) && (factors[k-1] == factors[k]))
fatal_error("Duplicate factor %s at index %u.",
uint128_to_static_string(factors[k], 0), k);
if ((k > 0) && (factors[k-1] > factors[k]))
fatal_error("Out-of-order factors %s and %s at indexes %u and %u.",
uint128_to_static_string(factors[k-1], 0),
uint128_to_static_string(factors[k], 1),
k-1, k);
}
}
#endif
return factors;
}
//------------------------------------------------------------------------------
// Print prime-power factorization of a number.
void print_ppf(const PrimePowerFactorization ppf)
{
printf("%s = ", uint128_to_static_string(ppf.n, 0));
if (ppf.n == 0)
{
printf("0");
}
else
{
for (uint i = 0; i < ppf.ω; i++)
{
if (i > 0)
printf(" x ");
printf("%s", uint128_to_static_string(ppf.f[i].p, 0));
if (ppf.f[i].e > 1)
printf("^%"PRIu8"", ppf.f[i].e);
}
}
printf("\n");
}
//------------------------------------------------------------------------------
int compare_powers_ascending(const void *const pf1,
const void *const pf2)
{
const PrimePower f1 = *((const PrimePower *)pf1);
const PrimePower f2 = *((const PrimePower *)pf2);
return (f1.e < f2.e)? -1:
(f1.e > f2.e)? +1:
0; // Not an error; duplicate exponents are common.
}
//------------------------------------------------------------------------------
int compare_powers_descending(const void *const pf1,
const void *const pf2)
{
const PrimePower f1 = *((const PrimePower *)pf1);
const PrimePower f2 = *((const PrimePower *)pf2);
return (f1.e < f2.e)? +1:
(f1.e > f2.e)? -1:
0; // Not an error; duplicate exponents are common.
}
//------------------------------------------------------------------------------
int compare_primes_ascending(const void *const pf1,
const void *const pf2)
{
const PrimePower f1 = *((const PrimePower *)pf1);
const PrimePower f2 = *((const PrimePower *)pf2);
return (f1.p < f2.p)? -1:
(f1.p > f2.p)? +1:
0; // Error; duplicate primes must never occur.
}
//------------------------------------------------------------------------------
int compare_primes_descending(const void *const pf1,
const void *const pf2)
{
const PrimePower f1 = *((const PrimePower *)pf1);
const PrimePower f2 = *((const PrimePower *)pf2);
return (f1.p < f2.p)? +1:
(f1.p > f2.p)? -1:
0; // Error; duplicate primes must never occur.
}
//------------------------------------------------------------------------------
// Sort prime-power factorization.
void sort_ppf(PrimePowerFactorization *const ppf,
const bool primes_major, // Best false
const bool primes_ascending, // Best false
const bool powers_ascending) // Best false
{
int (*compare_primes)(const void *, const void *) =
primes_ascending? compare_primes_ascending : compare_primes_descending;
int (*compare_powers)(const void *, const void *) =
powers_ascending? compare_powers_ascending : compare_powers_descending;
if (primes_major)
{
mergesort(ppf->f, ppf->ω, sizeof(ppf->f[0]), compare_powers);
mergesort(ppf->f, ppf->ω, sizeof(ppf->f[0]), compare_primes);
}
else
{
mergesort(ppf->f, ppf->ω, sizeof(ppf->f[0]), compare_primes);
mergesort(ppf->f, ppf->ω, sizeof(ppf->f[0]), compare_powers);
}
}
//------------------------------------------------------------------------------
// Compute prime-power factorization of a 128-bit value. Note that this
// function is designed to be fast *only* for numbers with very simple
// factorizations, e.g., those that produce large factor lists. Do not attempt
// to factor large semiprimes with this function. (The author does know how to
// factor large numbers efficiently; however, efficient factorization is beyond
// the scope of this small test program.)
PrimePowerFactorization compute_ppf(const uint128 n)
{
PrimePowerFactorization ppf;
if (n == 0)
{
ppf = (PrimePowerFactorization){ .ω = 0, .Ω = 0, .d = 0, .n = 0 };
}
else if (n == 1)
{
ppf = (PrimePowerFactorization){ .f[0] = { .p = 1, .e = 1 },
.ω = 1, .Ω = 1, .d = 1, .n = 1 };
}
else
{
ppf = (PrimePowerFactorization){ .ω = 0, .Ω = 0, .d = 1, .n = n };
uint128 m = n;
for (uint128 p = 2; p * p <= m; p += 1 + (p > 2))
{
if (m % p == 0)
{
assert(ppf.ω <= MAX_ω);
ppf.f[ppf.ω].p = p;
ppf.f[ppf.ω].e = 0;
while (m % p == 0)
{ m /= p; ppf.f[ppf.ω].e += 1; }
ppf.d *= (1 + ppf.f[ppf.ω].e);
ppf.Ω += ppf.f[ppf.ω].e;
ppf.ω += 1;
}
}
if (m > 1)
{
assert(ppf.ω <= MAX_ω);
ppf.f[ppf.ω].p = m;
ppf.f[ppf.ω].e = 1;
ppf.d *= 2;
ppf.Ω += 1;
ppf.ω += 1;
}
}
return ppf;
}
//------------------------------------------------------------------------------
// Parse prime-power factorization from a list of ASCII-encoded base-10 strings.
// The values are assumed to be 2-tuples (p,e) of prime p and exponent e.
// Primes must not exceed 2^128 - 1 and must not be repeated. Exponents must
// not exceed 2^8 - 1, but can of course be repeated. The constructed value
// must not exceed 2^128 - 1.
PrimePowerFactorization parse_ppf(const uint pairs, const char *const values[])
{
assert(pairs <= MAX_ω);
PrimePowerFactorization ppf;
if (pairs == 0)
{
ppf = (PrimePowerFactorization){ .ω = 0, .Ω = 0, .d = 0, .n = 0 };
}
else
{
ppf = (PrimePowerFactorization){ .ω = 0, .Ω = 0, .d = 1, .n = 1 };
for (uint i = 0; i < pairs; i++)
{
ppf.f[i].p = uint128_from_string(values[(i*2)+0]);
ppf.f[i].e = (uint8)strtoumax(values[(i*2)+1], NULL, 10);
// Validate prime value.
if (ppf.f[i].p < 2) // (Ideally this would actually do a primality test.)
fatal_error("Factor %s is invalid.",
uint128_to_static_string(ppf.f[i].p, 0));
// Accumulate count of unique prime factors.
if (ppf.ω > UINT8_MAX - 1)
fatal_error("Small-omega overflow at factor %s^%"PRIu8".",
uint128_to_static_string(ppf.f[i].p, 0), ppf.f[i].e);
ppf.ω += 1;
// Accumulate count of total prime factors.
if (ppf.Ω > UINT8_MAX - ppf.f[i].e)
fatal_error("Big-omega wverflow at factor %s^%"PRIu8".",
uint128_to_static_string(ppf.f[i].p, 0), ppf.f[i].e);
ppf.Ω += ppf.f[i].e;
// Accumulate total divisor count.
if (ppf.d > UINT32_MAX / (1 + ppf.f[i].e))
fatal_error("Divisor count overflow at factor %s^%"PRIu8".",
uint128_to_static_string(ppf.f[i].p, 0), ppf.f[i].e);
ppf.d *= (1 + ppf.f[i].e);
// Accumulate value.
for (uint8 k = 1; k <= ppf.f[i].e; k++)
{
if (ppf.n > UINT128_MAX / ppf.f[i].p)
fatal_error("Value overflow at factor %s.",
uint128_to_static_string(ppf.f[i].p, 0));
ppf.n *= ppf.f[i].p;
}
}
}
return ppf;
}
//------------------------------------------------------------------------------
// Main control. Parse command line and produce list of factors.
int main(const int argc, const char *const argv[])
{
bool primes_major = false;
bool primes_ascending = false;
bool powers_ascending = false;
PrimePowerFactorization ppf;
// --- Parse prime-power sort specifier (if present).
uint value_base = 1;
uint value_count = (uint)argc - 1;
if ((argc > 1) && (argv[1][0] == '-'))
{
static const struct
{
char *str; bool primes_major, primes_ascending, powers_ascending;
}
sort_options[] =
{
// Sorting criteria:
// ----------------------------------------
{ "ep", 0,0,0 }, // Exponents descending, primes descending
{ "Ep", 0,0,1 }, // Exponents ascending, primes descending
{ "eP", 0,1,0 }, // Exponents descending, primes ascending
{ "EP", 0,1,1 }, // Exponents ascending, primes ascending
{ "p", 1,0,0 }, // Primes descending (exponents irrelevant)
{ "P", 1,1,0 }, // Primes ascending (exponents irrelevant)
};
bool valid = false;
for (uint i = 0; i < ARRAY_CAPACITY(sort_options); i++)
{
if (strcmp(&argv[1][1], sort_options[i].str) == 0)
{
primes_major = sort_options[i].primes_major;
primes_ascending = sort_options[i].primes_ascending;
powers_ascending = sort_options[i].powers_ascending;
valid = true;
break;
}
}
if (!valid)
fatal_error("Bad sort specifier: \"%s\"", argv[1]);
value_base += 1;
value_count -= 1;
}
// --- Prime factorization from either a number or a raw prime factorization.
if (value_count == 1)
{
uint128 n = uint128_from_string(argv[value_base]);
ppf = compute_ppf(n);
}
else
{
if (value_count % 2 != 0)
fatal_error("Odd number of arguments (%u) given.", value_count);
uint pairs = value_count / 2;
ppf = parse_ppf(pairs, &argv[value_base]);
}
// --- Sort prime factorization by either the default or the user-overridden
// configuration.
sort_ppf(&ppf, primes_major, primes_ascending, powers_ascending);
print_ppf(ppf);
// --- Run for (as close as possible to) a fixed amount of time, tallying the
// elapsed CPU time.
uint128 iterations = 0;
double cpu_time = 0.0;
const double cpu_time_limit = 0.10;
uint128 memory_usage = 0;
while (cpu_time < cpu_time_limit)
{
clock_t clock_start = clock();
uint128 *factors = compute_factors(ppf);
clock_t clock_end = clock();
cpu_time += (double)(clock_end - clock_start) / (double)CLOCKS_PER_SEC;
memory_usage = sizeof(*factors) * ppf.d;
if (++iterations == 0) //1)
{
for (uint32 i = 0; i < ppf.d; i++)
printf("%s\n", uint128_to_static_string(factors[i], 0));
}
if (factors) free(factors);
}
// --- Print the average amount of CPU time required for each iteration.
uint memory_scale = (memory_usage >= 1e9)? 9:
(memory_usage >= 1e6)? 6:
(memory_usage >= 1e3)? 3:
0;
char *memory_units = (memory_scale == 9)? "GB":
(memory_scale == 6)? "MB":
(memory_scale == 3)? "KB":
"B";
printf("%s %"PRIu32" factors %.6f ms %.3f ns/factor %.3f %s\n",
uint128_to_static_string(ppf.n, 0),
ppf.d,
cpu_time/iterations * 1e3,
cpu_time/iterations * 1e9 / (double)(ppf.d? ppf.d : 1),
(double)memory_usage / pow(10, memory_scale),
memory_units);
return 0;
}
[I'm posting this answer just as a formality for completeness. I've already chosen someone else's answer as the accepted answer.]
Overview of algorithm. In searching for the fastest way to generate an in-memory list of factors (64-bit unsigned values in my case), I settled upon a hybrid algorithm that implements a two-dimensional bucket sort, which takes advantage of the internal knowledge of the sort keys (i.e., they are just integers and can therefore be computed upon). The specific method is something closer to a “ProxMapSort” but with two levels of keys (major, minor) instead of just one. The major key is simply the base-2 logarithm of the value. The minor key is the minimal number of most significant digits of the value needed to produce a reasonable spread at the second layer of buckets. Factors are produced first into a temporary work array of unsorted factors. Next, their distribution is analyzed and an array of bucket indexes is allocated and populated. Finally, the factors are stored directly into place in the final sorted array, using insertion sort. The vast majority of buckets have only 1, 2, or 3 values. Examples are given in the source code, which is attached at the bottom of this answer.
Spatial complexity. Memory utilization is approximately 4x that of a Quicksort-based solution, but this is actually rather insignificant, as the maximum memory ever used in the worst case (for 64-bit input) is 5.5 MB, of which 4.0 MB is held for only a small handful of milliseconds.
Runtime complexity. Performance is far better than a hand-coded Quicksort-based solution: for numbers with a nontrivial number of factors, it is unformly about 2.5x times faster. On my 3.4 GHz. Intel i7, it produces the 184,320 factors of 18,401,055,938,125,660,800 in sorted order in 0.0052 seconds, or about 96 clock cycles per factor, or about 35 million factors per second.
Graphs. Memory and runtime performance were profiled for the 47,616 canonical representatives of the equivalance classes of prime signatures of numbers up to 2⁶⁴–1. These are the so-called “highly factorable numbers” in 64-bit search space.
Total runtime is ~2.5x better than a Quicksort-based solution for nontrivial factor counts, shown below on this log–log plot:
The number of sorted factors produced per second is essentially the inversion of the above. Performance on a per-factor basis declines after the sweet spot of approximately 2000 factors, but not by much. Performance is affected by L1, L2, and L3 cache sizes, as well as the count of unique prime factors of the number being factored, which goes up roughly with the logarithm of the input value.
Peak memory usage is a straight line in this log–log plot, since it is proportional to the base-2 logarithm of the number of factors. Note that peak memory usage is only for a very brief period of time; short-lived work arrays are discarded within milliseconds. After the temporary arrays are discarded, what remains is the final list of factors, which is the same minimal usage as seen in the Quicksort-based solution.
Source Code. Attached below is a proof-of-concept program in the C programming language (specifically, C11). It has been tested on x86-64 with Clang/LLVM, although it should work fine with GCC as well.
/*==============================================================================
DESCRIPTION
This is a small proof-of-concept program to test the idea of "sorting"
factors using a form of bucket sort. The method is essentially a 2D version
of ProxMapSort that has tuned for vast, nonlinear distributions using two
keys (major, minor) rather than one. The major key is simply the floor of
the base-2 logarithm of the value, and the minor key is derived from the most
significant bits of the value.
INPUT
Input is given on the command line, either as a single argument giving the
number to be factored or an even number of arguments giving the 2-tuples that
comprise the prime-power factorization of the desired number. For example,
the number
75600 = 2^4 x 3^3 x 5^2 x 7
can be given by the following list of arguments:
2 4 3 3 5 2 7 1
Note: If a single number is given, it will require factoring to produce its
prime-power factorization. Since this is just a small test program, a very
crude factoring method is used that is extremely fast for small prime factors
but extremely slow for large prime factors. This is actually fine, because
the largest factor lists occur with small prime factors anyway, and it is the
production of large factor lists at which this program aims to be proficient.
It is simply not interesting to be fast at producing the factor list of a
number like 17293823921105882610 = 2 x 3 x 5 x 576460797370196087, because
it has only 32 factors. Numbers with tens or hundreds of thousands of
factors are much more interesting.
OUTPUT
Results are written to standard output. A list of factors in ascending order
is produced, followed by runtime (in microseconds) required to generate the
list (not including time to print it).
STATISTICS
Bucket size statistics for the 47616 canonical representatives of the prime
signature equivalence classes of 64-bit numbers:
==============================================================
Bucket size Total count of factored Total count of
b numbers needing size b buckets of size b
--------------------------------------------------------------
1 47616 (100.0%) 514306458 (76.2%)
2 47427 (99.6%) 142959971 (21.2%)
3 43956 (92.3%) 16679329 (2.5%)
4 27998 (58.8%) 995458 (0.1%)
5 6536 (13.7%) 33427 (<0.1%)
6 400 (0.8%) 729 (<0.1%)
7 12 (<0.1%) 18 (<0.1%)
--------------------------------------------------------------
~ 47616 (100.0%) 674974643 (100.0%)
--------------------------------------------------------------
Thus, no 64-bit number (of the input set) ever requires more than 7 buckets,
and the larger the bucket size the less frequent it is. This is highly
desirable. Note that although most numbers need at least 1 bucket of size 5,
the vast majority of buckets (99.9%) are of size 1, 2, or 3, meaning that
insertions are extremely efficient. Therefore, the use of insertion sort
for the buckets is clearly the right choice and is arguably optimal for
performance.
AUTHOR
Todd Lehman
2015/05/08
*/
#include <inttypes.h>
#include <limits.h>
#include <stdbool.h>
#include <stdlib.h>
#include <stdio.h>
#include <stdarg.h>
#include <string.h>
#include <time.h>
#include <math.h>
#include <assert.h>
typedef unsigned int uint;
typedef uint8_t uint8;
typedef uint16_t uint16;
typedef uint32_t uint32;
typedef uint64_t uint64;
#define ARRAY_CAPACITY(x) (sizeof(x) / sizeof((x)[0]))
//-----------------------------------------------------------------------------
// This structure is sufficient to represent the prime-power factorization of
// all 64-bit values. The field names ω and Ω are dervied from the standard
// number theory functions ω(n) and Ω(n), which count the number of unique and
// non-unique prime factors of n, respectively. The field name d is derived
// from the standard number theory function d(n), which counts the number of
// divisors of n, including 1 and n.
//
// The maximum possible value here of ω is 15, which occurs for example at
// n = 7378677391061896920 = 2^3 x 3^2 x 5 x 7 x 11 x 13 x 17 x 19 x 23 x 29
// 31 x 37 x 41 x 43 x 47, which has 15 unique prime factors.
//
// The maximum possible value of Ω here is 63, which occurs for example at
// n = 2^63 and n = 2^62 x 3, both of which have 63 non-unique prime factors.
//
// The maximum possible value of d here is 184320, which occurs at
// n = 18401055938125660800 = 2^7 x 3^4 x 5^2 x 7^2 x 11 x 13 x 17 x 19 x 23 x
// 29 x 31 x 37 x 41.
//
// Maximum possible exponents when exponents are sorted in decreasing order:
//
// Index Maximum Bits Example of n
// ----- ------- ---- --------------------------------------------
// 0 63 6 (2)^63
// 1 24 5 (2*3)^24
// 2 13 4 (2*3*5)^13
// 3 8 4 (2*3*5*7)^8
// 4 5 3 (2*3*5*7*11)^5
// 5 4 3 (2*3*5*7*11*13)^4
// 6 3 2 (2*3*5*7*11*13*17)^3
// 7 2 2 (2*3*5*7*11*13*17*19)^2
// 8 2 2 (2*3*5*7*11*13*17*19*23)^2
// 9 1 1 (2*3*5*7*11*13*17*19*23*29)^1
// 10 1 1 (2*3*5*7*11*13*17*19*23*29*31)^1
// 11 1 1 (2*3*5*7*11*13*17*19*23*29*31*37)^1
// 12 1 1 (2*3*5*7*11*13*17*19*23*29*31*37*41)^1
// 13 1 1 (2*3*5*7*11*13*17*19*23*29*31*37*41*43)^1
// 14 1 1 (2*3*5*7*11*13*17*19*23*29*31*37*41*43*47)^1
// ----- ------- ---- --------------------------------------------
// 15 63 37
//
#pragma pack(push, 8)
typedef struct
{
uint8 e[16]; // Exponents.
uint64 p[16]; // Primes in increasing order.
uint8 ω; // Count of prime factors without multiplicity.
uint8 Ω; // Count of prime factors with multiplicity.
uint32 d; // Count of factors of n, including 1 and n.
uint64 n; // Value of n on which all other fields of this struct depend.
}
PrimePowerFactorization; // 176 bytes with 8-byte packing
#pragma pack(pop)
#define MAX_ω 15
#define MAX_Ω 63
//-----------------------------------------------------------------------------
// Fatal error: print error message and abort.
void fatal_error(const char *format, ...)
{
va_list args;
va_start(args, format);
vfprintf(stderr, format, args);
exit(1);
}
//-----------------------------------------------------------------------------
// Compute 64-bit 2-adic integer inverse.
uint64 uint64_inv(const uint64 x)
{
assert(x != 0);
uint64 y = 1;
for (uint i = 0; i < 6; i++) // 6 = log2(log2(2**64)) = log2(64)
y = y * (2 - (x * y));
return y;
}
//------------------------------------------------------------------------------
// Compute 2 to arbitrary power. This is just a portable and abstract way to
// write a left-shift operation. Note that the use of the UINT64_C macro here
// is actually required, because the result of 1U<<x is not guaranteed to be a
// 64-bit result; on a 32-bit compiler, 1U<<32 is 0 or is undefined.
static inline
uint64 uint64_pow2(x)
{
return UINT64_C(1) << x;
}
//------------------------------------------------------------------------------
// Deduce native word size (int, long, or long long) for 64-bit integers.
// This is needed for abstracting certain compiler-specific intrinsic functions.
#if UINT_MAX == 0xFFFFFFFFFFFFFFFFU
#define UINT64_IS_U
#elif ULONG_MAX == 0xFFFFFFFFFFFFFFFFUL
#define UINT64_IS_UL
#elif ULLONG_MAX == 0xFFFFFFFFFFFFFFFFULL
#define UINT64_IS_ULL
#else
//error "Unable to deduce native word size of 64-bit integers."
#endif
//------------------------------------------------------------------------------
// Define abstracted intrinsic function for counting leading zeros. Note that
// the value is well-defined for nonzero input but is compiler-specific for
// input of zero.
#if defined(UINT64_IS_U) && __has_builtin(__builtin_clz)
#define UINT64_CLZ(x) __builtin_clz(x)
#elif defined(UINT64_IS_UL) && __has_builtin(__builtin_clzl)
#define UINT64_CLZ(x) __builtin_clzl(x)
#elif defined(UINT64_IS_ULL) && __has_builtin(__builtin_clzll)
#define UINT64_CLZ(x) __builtin_clzll(x)
#else
#undef UINT64_CLZ
#endif
//------------------------------------------------------------------------------
// Compute floor of base-2 logarithm y = log_2(x), where x > 0. Uses fast
// intrinsic function if available; otherwise resorts to hand-rolled method.
static inline
uint uint64_log2(uint64 x)
{
assert(x > 0);
#if defined(UINT64_CLZ)
return 63 - UINT64_CLZ(x);
#else
#define S(k) if ((x >> k) != 0) { y += k; x >>= k; }
uint y = 0; S(32); S(16); S(8); S(4); S(2); S(1); return y;
#undef S
#endif
}
//------------------------------------------------------------------------------
// Compute major key, given a nonzero number. The major key is simply the
// floor of the base-2 logarithm of the number.
static inline
uint major_key(const uint64 n)
{
assert(n > 0);
uint k1 = uint64_log2(n);
return k1;
}
//------------------------------------------------------------------------------
// Compute minor key, given a nonzero number, its major key, k1, and the
// bit-size b of major bucket k1. The minor key, k2, is is computed by first
// removing the most significant 1-bit from the number, because it adds no
// information, and then extracting the desired number of most significant bits
// from the remainder. For example, given the number n=1463 and a major bucket
// size of b=6 bits, the keys are computed as follows:
//
// Step 0: Given number n = 0b10110110111 = 1463
//
// Step 1: Compute major key: k1 = floor(log_2(n)) = 10
//
// Step 2: Remove high-order 1-bit: n' = 0b0110110111 = 439
//
// Step 3: Compute minor key: k2 = n' >> (k1 - b)
// = 0b0110110111 >> (10 - 6)
// = 0b0110110111 >> 4
// = 0b011011
// = 27
static inline
uint minor_key(const uint64 n, const uint k1, const uint b)
{
assert(n > 0); assert(k1 >= 0); assert(b > 0);
const uint k2 = (uint)((n ^ uint64_pow2(k1)) >> (k1 - b));
return k2;
}
//------------------------------------------------------------------------------
// Raw unsorted factor.
#pragma push(pack, 4)
typedef struct
{
uint64 n; // Value of factor.
uint32 k1; // Major key.
uint32 k2; // Minor key.
}
UnsortedFactor;
#pragma pop(pack)
//------------------------------------------------------------------------------
// Compute sorted list of factors, given a prime-power factorization.
static uint64 memory_usage;
uint64 *compute_factors(const PrimePowerFactorization ppf)
{
memory_usage = 0;
if (ppf.n == 0)
return NULL;
uint64 *sorted_factors = calloc(ppf.d, sizeof(*sorted_factors));
if (!sorted_factors)
fatal_error("Failed to allocate array of %"PRIu32" factors.", ppf.d);
memory_usage += ppf.d * sizeof(*sorted_factors);
UnsortedFactor *unsorted_factors = malloc(ppf.d * sizeof(*unsorted_factors));
if (!unsorted_factors)
fatal_error("Failed to allocate array of %"PRIu32" factors.", ppf.d);
memory_usage += ppf.d * sizeof(*unsorted_factors);
// These arrays are indexed by the major key of a number.
uint32 major_counts[64]; // Counts of factors in major buckets.
uint32 major_spans[64]; // Counts rounded up to power of 2.
uint32 major_bits[64]; // Base-2 logarithm of bucket size.
uint32 major_indexes[64]; // Indexes into minor array.
memset(major_counts, 0, sizeof(major_counts));
memset(major_spans, 0, sizeof(major_spans));
memset(major_bits, 0, sizeof(major_bits));
memset(major_indexes, 0, sizeof(major_indexes));
// --- Step 1: Produce unsorted list of factors from prime-power
// factorization. At the same time, count groups of factors by their
// major keys.
{
// This array is for counting in the multi-radix number system dictated by
// the exponents of the prime-power factorization. An invariant is that
// e[i] <= ppf.e[i] for all i (0 < i <ppf.ω).
uint8 e[MAX_ω];
for (uint i = 0; i < ppf.ω; i++)
e[i] = 0;
// Initialize inverse-prime-powers. This array allows for division by
// p[i]**e[i] extremely quickly in the main loop below. Note that 2-adic
// inverses are not defined for even numbers (of which 2 is the only prime),
// so powers of 2 must be handled specially.
uint64 pe_inv[MAX_ω];
for (uint i = 0; i < ppf.ω; i++)
{
uint64 pe = 1; for (uint j = 1; j <= ppf.e[i]; j++) pe *= ppf.p[i];
pe_inv[i] = uint64_inv(pe);
}
uint64 n = 1; // Current factor accumulator.
for (uint k = 0; k < ppf.d; k++) // k indexes into unsorted_factors[].
{
//printf("unsorted_factors[%u] = %"PRIu64" j = %u\n", k, n, j);
assert(ppf.n % n == 0);
unsorted_factors[k].n = n;
uint k1 = major_key(n);
assert(k1 < ARRAY_CAPACITY(major_counts));
unsorted_factors[k].k1 = k1;
major_counts[k1] += 1;
// Increment the remainder of the multi-radix number e[].
for (uint i = 0; i < ppf.ω; i++)
{
if (e[i] == ppf.e[i]) // Carrying is occurring.
{
if (ppf.p[i] == 2)
n >>= ppf.e[i]; // Divide n by 2 ** ppf.e[i].
else
n *= pe_inv[i]; // Divide n by ppf.p[i] ** ppf.e[i].
e[i] = 0;
}
else // Carrying is not occurring.
{
n *= ppf.p[i];
e[i] += 1;
break;
}
}
}
assert(n == 1); // n always cycles back to 1, not to ppf.n.
assert(unsorted_factors[ppf.d-1].n == ppf.n);
}
// --- Step 2: Define the major bits array, the major spans array, the major
// index array, and count the total spans.
uint32 total_spans = 0;
{
uint32 k = 0;
for (uint k1 = 0; k1 < ARRAY_CAPACITY(major_counts); k1++)
{
uint32 count = major_counts[k1];
uint32 bits = (count <= 1)? count : uint64_log2(count - 1) + 1;
major_bits[k1] = bits;
major_spans[k1] = (count > 0)? (UINT32_C(1) << bits) : 0;
major_indexes[k1] = k;
k += major_spans[k1];
}
total_spans = k;
}
// --- Step 3: Allocate and populate the minor counts array. Note that it
// must be initialized to zero.
uint32 *minor_counts = calloc(total_spans, sizeof(*minor_counts));
if (!minor_counts)
fatal_error("Failed to allocate array of %"PRIu32" counts.", total_spans);
memory_usage += total_spans * sizeof(*minor_counts);
for (uint k = 0; k < ppf.d; k++)
{
const uint64 n = unsorted_factors[k].n;
const uint k1 = unsorted_factors[k].k1;
const uint k2 = minor_key(n, k1, major_bits[k1]);
assert(k2 < major_spans[k1]);
unsorted_factors[k].k2 = k2;
minor_counts[major_indexes[k1] + k2] += 1;
}
// --- Step 4: Define the minor indexes array.
//
// NOTE: Instead of allocating a separate array, the earlier-allocated array
// of minor indexes is simply repurposed here using an alias.
uint32 *minor_indexes = minor_counts; // Alias the array for repurposing.
{
uint32 k = 0;
for (uint i = 0; i < total_spans; i++)
{
uint32 count = minor_counts[i]; // This array is the same array...
minor_indexes[i] = k; // ...as this array.
k += count;
}
}
// --- Step 5: Populate the sorted factors array. Note that the array must
// be initialized to zero earlier because values of zero are used
// as sentinels in the bucket lists.
for (uint32 i = 0; i < ppf.d; i++)
{
uint64 n = unsorted_factors[i].n;
const uint k1 = unsorted_factors[i].k1;
const uint k2 = unsorted_factors[i].k2;
// Insert factor into bucket using insertion sort (which happens to be
// extremely fast because we know the bucket sizes are always very small).
uint32 k;
for (k = minor_indexes[major_indexes[k1] + k2];
sorted_factors[k] != 0;
k++)
{
assert(k < ppf.d);
if (sorted_factors[k] > n)
{ uint64 t = sorted_factors[k]; sorted_factors[k] = n; n = t; }
}
sorted_factors[k] = n;
}
// --- Step 6: Validate array of sorted factors.
{
for (uint32 k = 1; k < ppf.d; k++)
{
if (sorted_factors[k] == 0)
fatal_error("Produced a factor of 0 at index %"PRIu32".", k);
if (ppf.n % sorted_factors[k] != 0)
fatal_error("Produced non-factor %"PRIu64" at index %"PRIu32".",
sorted_factors[k], k);
if (sorted_factors[k-1] == sorted_factors[k])
fatal_error("Duplicate factor %"PRIu64" at index %"PRIu32".",
sorted_factors[k], k);
if (sorted_factors[k-1] > sorted_factors[k])
fatal_error("Out-of-order factors %"PRIu64" and %"PRIu64" "
"at indexes %"PRIu32" and %"PRIu32".",
sorted_factors[k-1], sorted_factors[k], k-1, k);
}
}
free(minor_counts);
free(unsorted_factors);
return sorted_factors;
}
//------------------------------------------------------------------------------
// Compute prime-power factorization of a 64-bit value. Note that this function
// is designed to be fast *only* for numbers with very simple factorizations,
// e.g., those that produce large factor lists. Do not attempt to factor
// large semiprimes with this function. (The author does know how to factor
// large numbers efficiently; however, efficient factorization is beyond the
// scope of this small test program.)
PrimePowerFactorization compute_ppf(const uint64 n)
{
PrimePowerFactorization ppf;
if (n == 0)
{
ppf = (PrimePowerFactorization){ .ω = 0, .Ω = 0, .d = 0, .n = 0 };
}
else if (n == 1)
{
ppf = (PrimePowerFactorization){ .p = { 1 }, .e = { 1 },
.ω = 1, .Ω = 1, .d = 1, .n = 1 };
}
else
{
ppf = (PrimePowerFactorization){ .ω = 0, .Ω = 0, .d = 1, .n = n };
uint64 m = n;
for (uint64 p = 2; p * p <= m; p += 1 + (p > 2))
{
if (m % p == 0)
{
assert(ppf.ω <= MAX_ω);
ppf.p[ppf.ω] = p;
ppf.e[ppf.ω] = 0;
while (m % p == 0)
{ m /= p; ppf.e[ppf.ω] += 1; }
ppf.d *= (1 + ppf.e[ppf.ω]);
ppf.Ω += ppf.e[ppf.ω];
ppf.ω += 1;
}
}
if (m > 1)
{
assert(ppf.ω <= MAX_ω);
ppf.p[ppf.ω] = m;
ppf.e[ppf.ω] = 1;
ppf.d *= 2;
ppf.Ω += 1;
ppf.ω += 1;
}
}
return ppf;
}
//------------------------------------------------------------------------------
// Parse prime-power factorization from a list of ASCII-encoded base-10 strings.
// The values are assumed to be 2-tuples (p,e) of prime p and exponent e.
// Primes must not exceed 2^64 - 1. Exponents must not exceed 2^8 - 1. The
// constructed value must not exceed 2^64 - 1.
PrimePowerFactorization parse_ppf(const uint pairs, const char *const values[])
{
assert(pairs <= MAX_ω);
PrimePowerFactorization ppf;
if (pairs == 0)
{
ppf = (PrimePowerFactorization){ .ω = 0, .Ω = 0, .d = 0, .n = 0 };
}
else
{
ppf = (PrimePowerFactorization){ .ω = 0, .Ω = 0, .d = 1, .n = 1 };
for (uint i = 0; i < pairs; i++)
{
ppf.p[i] = (uint64)strtoumax(values[(i*2)+0], NULL, 10);
ppf.e[i] = (uint8)strtoumax(values[(i*2)+1], NULL, 10);
// Validate prime value.
if (ppf.p[i] < 2) // (Ideally this would actually do a primality test.)
fatal_error("Factor %"PRIu64" is invalid.", ppf.p[i]);
// Accumulate count of unique prime factors.
if (ppf.ω > UINT8_MAX - 1)
fatal_error("Small-omega overflow at factor %"PRIu64"^%"PRIu8".",
ppf.p[i], ppf.e[i]);
ppf.ω += 1;
// Accumulate count of total prime factors.
if (ppf.Ω > UINT8_MAX - ppf.e[i])
fatal_error("Big-omega wverflow at factor %"PRIu64"^%"PRIu8".",
ppf.p[i], ppf.e[i]);
ppf.Ω += ppf.e[i];
// Accumulate total divisor count.
if (ppf.d > UINT32_MAX / (1 + ppf.e[i]))
fatal_error("Divisor count overflow at factor %"PRIu64"^%"PRIu8".",
ppf.p[i], ppf.e[i]);
ppf.d *= (1 + ppf.e[i]);
// Accumulate value.
for (uint8 k = 1; k <= ppf.e[i]; k++)
{
if (ppf.n > UINT64_MAX / ppf.p[i])
fatal_error("Value overflow at factor %"PRIu64".", ppf.p[i]);
ppf.n *= ppf.p[i];
}
}
}
return ppf;
}
//------------------------------------------------------------------------------
// Main control. Parse command line and produce list of factors.
int main(const int argc, const char *const argv[])
{
PrimePowerFactorization ppf;
uint values = (uint)argc - 1; // argc is always guaranteed to be at least 1.
if (values == 1)
{
ppf = compute_ppf((uint64)strtoumax(argv[1], NULL, 10));
}
else
{
if (values % 2 != 0)
fatal_error("Odd number of arguments (%u) given.", values);
uint pairs = values / 2;
ppf = parse_ppf(pairs, &argv[1]);
}
// Run for (as close as possible to) a fixed amount of time, tallying the
// elapsed CPU time.
uint64 iterations = 0;
double cpu_time = 0.0;
const double cpu_time_limit = 0.05;
while (cpu_time < cpu_time_limit)
{
clock_t clock_start = clock();
uint64 *factors = compute_factors(ppf);
clock_t clock_end = clock();
cpu_time += (double)(clock_end - clock_start) / (double)CLOCKS_PER_SEC;
if (++iterations == 1)
{
for (uint32 i = 0; i < ppf.d; i++)
printf("%"PRIu64"\n", factors[i]);
}
if (factors) free(factors);
}
// Print the average amount of CPU time required for each iteration.
uint mem_scale = (memory_usage >= 1e9)? 9:
(memory_usage >= 1e6)? 6:
(memory_usage >= 1e3)? 3:
0;
char *mem_units = (mem_scale == 9)? "GB":
(mem_scale == 6)? "MB":
(mem_scale == 3)? "KB":
"B";
printf("%"PRIu64" %"PRIu32" factors %.6f ms %.3f ns/factor %.3f %s\n",
ppf.n,
ppf.d,
cpu_time/iterations * 1e3,
cpu_time/iterations * 1e9 / (double)(ppf.d? ppf.d : 1),
(double)memory_usage / pow(10, mem_scale),
mem_units);
return 0;
}
In short: Repeatedly pull the next-smallest factor from a heap, then push back every multiple of that factor that is still a factor of n. Use a trick to avoid duplicates arising, so that the heap size never exceeds d. The time complexity is O(kd log d), where k is the number of distinct prime factors.
The key property that we make use of is that if x and y are both factors of n with y = x*p for some factor p >= 2 -- i.e. if the prime factors of x are a proper submultiset of the prime factors of y -- then x < y. This means that it is always safe to output x before any such y is even inserted into the heap. The heap is effectively used only to compare factors where neither is a submultiset of the other.
A first attempt: Duplicates slow things down
It will be helpful to first describe an algorithm that produces the right answer, but also produces many duplicates:
- Set prev = NULL.
- Insert 1 into a heap H.
- Extract the top of heap t from H. If the heap is empty, stop.
- If t == prev then goto 3. [EDIT: Fixed]
- Output t.
- Set prev = t.
- For each distinct prime factor p of n:
- If n % (t*p) == 0 (i.e. if t*p is still a factor of n), push t*p onto H.
- Goto 3.
The only problem with the above algorithm is that it can generate the same factor many times. For example, if n = 30, then the factor 15 will be generated as a child of the factor 5 (by multiplying by the prime factor 3), and also as a child of the factor 3 (by multiplying by 5). One way around this is to notice that any duplicates must be read out in a contiguous block when they reach the top of the heap, so you can simply check whether the top of the heap is equal to the just-extracted value, and to keep extracting and discarding it if so. But a better approach is possible:
Killing duplicates at the source
How many ways can a factor x be generated? First consider the case in which x contains no prime factors with multiplicity > 1. In that case, if it contains m distinct prime factors, then there are m-1 "parent" factors that will generate it as a "child" in the previous algorithm -- each of these parents consists of some subset of m-1 of the m prime factors, with the remaining prime factor being the one that gets added to the child. (If x has a prime factor with multiplicity > 1, then there are in fact m parents.) If we had a way of deciding on exactly one of these parents to be the "chosen one" that actually generates x as a child, and this rule resulted in a test that could be applied to each parent at the time that parent is popped off, then we could avoid ever creating any duplicates in the first place.
We can use the following rule: For any given x, choose the potential parent y that is missing the largest of x's m factors. This makes for a simple rule: A parent y produces a child x if and only if x = y*p for some p greater than or equal to any prime factor already in y. This is easy to test for: Just loop through prime factors in decreasing order, generating children for each, until we hit a prime factor that already divides y. In the previous example, the parent 3 will produce 15, but the parent 5 will not (because 3 < 5) -- so 15 indeed gets produced only once. For n = 30, the complete tree looks like:
1
/|\
2 3 5
/| \
6 10 15
|
30
Notice that each factor is generated exactly once.
The new, duplicate-free algorithm is as follows:
- Insert 1 into a heap H.
- Extract the top of heap t from H. If the heap is empty, stop.
- Output t.
- For each distinct prime factor p of n in decreasing order:
- If n % (t*p) == 0 (i.e. if t*p is still a factor of n), push t*p onto H.
- If t % p == 0 (i.e. if t already contains p as a factor) then stop.
- Goto 2.
We can merge streams of multiples, produced so there are no duplicates in the first place.
Starting with the list [1]
, for each unique prime factor p
, we multiply the list by p
iteratively k
times (where k
is the multiplicity of p
) to get k
new lists, and merge them together with that incoming list.
In Haskell,
ordfactors n = -- <----------------------<---<---<-----\
foldr g [1] -- g (19,1) (g (7,1) (g (3,2) (g (2,3) [1])))
. reverse -- [(19,1),(7,1),(3,2),(2,3)] ^
. primePowers -- [(2,3),(3,2),(7,1),(19,1)] |
$ n -- 9576 --->--->--->----/
where
g (p,k) xs = mergeAsTree
. take (k+1) -- take 3 [a,b,c,d..] = [a,b,c]
. iterate (map (p*)) -- iterate f x = [x, y, z,...]
$ xs -- where { y=f x; z=f y; ... }
{- g (2,3) [1] = let a0 = [1]
a1 = map (2*) a0 -- [2]
a2 = map (2*) a1 -- [4]
a3 = map (2*) a2 -- [8]
in mergeAsTree [ a0, a1, a2, a3 ] -- xs2 = [1,2,4,8]
g (3,2) xs2 = let b0 = xs2 -- [1,2,4,8]
b1 = map (3*) b0 -- [3,6,12,24]
b2 = map (3*) b1 -- [9,18,36,72]
in mergeAsTree [ b0, b1, b2 ] -- xs3 = [1,2,3,4,6,8,9,12,...]
g (7,1) xs3 = mergeAsTree [ xs3, map (7*) xs3 ] -- xs4 = [1,2,3,4,6,7,8,9,...]
g (19,1) xs4 = mergeAsTree [ xs4, map (19*) xs4 ]
-}
mergeAsTree xs = foldi merge [] xs -- [a,b] --> merge a b
-- [a,b,c,d] --> merge (merge a b) (merge c d)
foldi f z [] = z
foldi f z (x:xs) = f x (foldi f z (pairs f xs))
pairs f (x:y:t) = f x y : pairs f t
pairs _ t = t
foldi
arranges the binary merge
s (which presuppose that there's no duplicates in the streams being merged, for streamlined operation) in a tree-like fashion for speed; whereas foldr
works in linear fashion.
primePowers n | n > 1 = -- 9576 => [(2,3),(3,2),(7,1),(19,1)]
map (\xs -> (head xs,length xs)) -- ^
. group -- [[2,2,2],[3,3],[7],[19]] |
. factorize -- [2,2,2,3,3,7,19] |
$ n -- 9576 --->--->--->---/
group
is a standard function that groups adjacent equals in a list together, and factorize
is a well-known trial-division algorithm that produces prime factors of a number in non-decreasing order:
factorize n | n > 1 = go n (2:[3,5..]) -- 9576 = 2*2*2*3*3*7*19
where -- produce prime factors only
go n (d:t)
| d*d > n = [n]
| r == 0 = d : go q (d:t)
| otherwise = go n t
where
(q,r) = quotRem n d
factorize _ = []
(.)
is a functional composition operator, chaining the output of its argument function on its right as input into the one on its left. It (and $
) can be read aloud as "of".