Evaluate this Trigonometric Expression: $\sqrt[3]{\cos \frac{2\pi}{7}} + \sqrt[3]{\cos \frac{4\pi}{7}} + \sqrt[3]{\cos \frac{6\pi}{7}}$

let $$x=\sqrt[3]{\cos{\dfrac{2\pi}{7}}},y=\sqrt[3]{\cos{\dfrac{4\pi}{7}}},z=\sqrt[3]{\cos{\dfrac{6\pi}{7}}},$$ then we have $$\begin{cases} x^3+y^3+z^3=-\dfrac{1}{2}\\ (xy)^3+(yz)^3+(xz)^3=-\dfrac{1}{2}\\ (xyz)^3=\dfrac{1}{8} \end{cases}$$ use this identity $$a^3+b^3+c^3=(a+b+c)^3-3(a+b+c)(ab+bc+ac)+3abc$$ so $$\begin{cases} (x+y+z)^3-3(x+y+z)(xy+yz+xz)+3xyz=-\dfrac{1}{2}\\ (xy+yz+xz)^3-3(xy+yz+xz)[xyz(x+y+z)]+3x^2y^2z^2=-\dfrac{1}{2}\\ xyz=\dfrac{1}{2} \end{cases}$$ let $$u=x+y+z, v=xy+yz+xz$$ then we have $$\begin{cases} u^3-3uv+2=0\\ 4v^3-6uv+5=0 \end{cases}$$ so we have $$\Longrightarrow 4v^3-2u^3+1=0, v=\dfrac{u^3+2}{3u}$$ so $$4\left(\dfrac{u^3+2}{3u}\right)^3-2u^3+1=0\Longrightarrow 4u^9-30u^6+75u^3+32=0$$ let $t=u^3$,so we have $$4t^3-30t^2+75t+32=0$$ let $t=\dfrac{5}{2}-a$,then $$4\left(\dfrac{5}{2}-a\right)^3-30\left(\dfrac{5}{2}-a\right)^2+75\left(\dfrac{5}{2}-a\right)+32=0$$ $$\Longrightarrow 4a^3=\dfrac{189}{2}\Longrightarrow a=\dfrac{3\sqrt[3]{7}}{2}$$ so $$u=x+y+z=\sqrt[3]{\cos{\dfrac{2\pi}{7}}}+\sqrt[3]{\cos{\dfrac{4\pi}{7}}}+\sqrt[3]{\cos{\dfrac{6\pi}{7}}}=\sqrt[3]{\dfrac{1}{2}\left(5-3\sqrt[3]{7}\right)}$$