Explode array data into rows in spark

The explode function should get that done.

pyspark version:

>>> df = spark.createDataFrame([(1, "A", [1,2,3]), (2, "B", [3,5])],["col1", "col2", "col3"])
>>> from pyspark.sql.functions import explode
>>> df.withColumn("col3", explode(df.col3)).show()
+----+----+----+
|col1|col2|col3|
+----+----+----+
|   1|   A|   1|
|   1|   A|   2|
|   1|   A|   3|
|   2|   B|   3|
|   2|   B|   5|
+----+----+----+

Scala version

scala> val df = Seq((1, "A", Seq(1,2,3)), (2, "B", Seq(3,5))).toDF("col1", "col2", "col3")
df: org.apache.spark.sql.DataFrame = [col1: int, col2: string ... 1 more field]

scala> df.withColumn("col3", explode($"col3")).show()
+----+----+----+
|col1|col2|col3|
+----+----+----+
|   1|   A|   1|
|   1|   A|   2|
|   1|   A|   3|
|   2|   B|   3|
|   2|   B|   5|
+----+----+----+

explode does exactly what you want. Docs:

http://spark.apache.org/docs/latest/api/python/pyspark.sql.html#pyspark.sql.functions.explode

Also, here is an example from a different question using it:

https://stackoverflow.com/a/44418598/1461187


You can use explode function Below is the simple example for your case

import org.apache.spark.sql.functions._
import spark.implicits._

  val data = spark.sparkContext.parallelize(Seq(
    (1, "A", List(1,2,3)),
    (2, "B", List(3, 5))
  )).toDF("FieldA", "FieldB", "FieldC")

    data.withColumn("ExplodedField", explode($"FieldC")).drop("FieldC")

Hope this helps!