Explode array data into rows in spark
The explode function should get that done.
pyspark version:
>>> df = spark.createDataFrame([(1, "A", [1,2,3]), (2, "B", [3,5])],["col1", "col2", "col3"])
>>> from pyspark.sql.functions import explode
>>> df.withColumn("col3", explode(df.col3)).show()
+----+----+----+
|col1|col2|col3|
+----+----+----+
| 1| A| 1|
| 1| A| 2|
| 1| A| 3|
| 2| B| 3|
| 2| B| 5|
+----+----+----+
Scala version
scala> val df = Seq((1, "A", Seq(1,2,3)), (2, "B", Seq(3,5))).toDF("col1", "col2", "col3")
df: org.apache.spark.sql.DataFrame = [col1: int, col2: string ... 1 more field]
scala> df.withColumn("col3", explode($"col3")).show()
+----+----+----+
|col1|col2|col3|
+----+----+----+
| 1| A| 1|
| 1| A| 2|
| 1| A| 3|
| 2| B| 3|
| 2| B| 5|
+----+----+----+
explode does exactly what you want. Docs:
http://spark.apache.org/docs/latest/api/python/pyspark.sql.html#pyspark.sql.functions.explode
Also, here is an example from a different question using it:
https://stackoverflow.com/a/44418598/1461187
You can use explode function Below is the simple example for your case
import org.apache.spark.sql.functions._
import spark.implicits._
val data = spark.sparkContext.parallelize(Seq(
(1, "A", List(1,2,3)),
(2, "B", List(3, 5))
)).toDF("FieldA", "FieldB", "FieldC")
data.withColumn("ExplodedField", explode($"FieldC")).drop("FieldC")
Hope this helps!