Factoring factorials

Jelly,  17  18 bytes

!P
ÇṗLÇ⁼¥ÐfÇḢḟ1ȯ0F

A monadic link taking and returning a list of the numbers (sticks to the one factorial per number option)

Try it online!

How?

A golfed (although independently written) version of Pietu1998's solution.

!P - Link 1, product of factorials: list
!  - factorial (vectorises)
 P - product

ÇṗLÇ⁼¥ÐfÇḢḟ1ȯ0F - Main link: list                       e.g. [3,2,2]
Ç               - call the last link (1) as a monad           24
  L             - length                                      3
 ṗ              - Cartesian power      [[1,1,1],[1,1,2],...,[1,1,24],...,[24,24,24]]
        Ç       - call the last link (1) as a monad           24
      Ðf        - filter keep if:
     ¥          -   last two links as a dyad:
   Ç            -     call the last link (1) as a monad     [1,2,...,24!,...,24!^3]
    ⁼           -     equal?
         Ḣ      - head
          ḟ1    - filter out any ones
            ȯ0  - or with zero (for the empty list case)
              F - flatten (to cater for the fact that zero is not yet a list)

Jelly, 19 bytes

,!P€E
SṗLçÐfµḢḟ1ȯ1F

Try it online!

Quick and dirty. Very slow, even the 23!2!3!2! test case is a stretch. I/O as lists of integers.

Explanation

,!P€E    Helper link. Arguments: attempt, original
,        Make the array [attempt, original].
         Example: [[1,1,1,4], [2,3,2,0]]
 !       Take the factorial of each item.
         Example: [[1,1,1,24], [2,6,2,1]]
  P€     Take the product of each sublist.
         Example: [24, 24]
    E    Check if the values are equal.

SṗLçÐfµḢḟ1ȯ1F   Main link. Arguments: original
S               Find the sum S of the integers in the input.
  L             Find the number N of integers in the input.
 ṗ              Generate all lists containing N integers from 1 to S.
   çÐf          Take the lists whose factorial-product is the same as the original.
       Ḣ        Take the first match. This is the one with the most ones.
        ḟ1      Remove any ones.
          ȯ1    If there were only ones, return a one instead.
            F   Turn into a list if needed.

Clean, 397 ... 317 bytes

import StdEnv,StdLib
c=length
f c m=sortBy c o flatten o map m
%n=f(>)@[2..n]
@1=[]
@n#f=[i\\i<-[2..n]|n/i*i==n&&and[i/j*j<i\\j<-[2..i-1]]]
=f++ @(n/prod f)
?l=group(f(>)%l)
$l=hd(f(\a b=c a<c b)(~(?l))[0..sum l])
~[]_=[[]]
~i n=[[m:k]\\m<-take n[hd(i!!0++[0])..],k<- ~[drop(c a)b\\a<-group(%m)&b<-i|b>a]n|i== ?[m:k]]

Try it online!

This takes an [Int], determines the prime factors of the result, and reduces over the factors to find the smallest representation, using the largest factor at any stage as a baseline value for the next factorial term. It won't complete some test cases on TIO, but it is fairly* fast, and can run them all in under 3 minutes on a midrange laptop.

* for an O((prod(N)!)^sum(N)) complexity algorithm