Find the tangent of the sum of inverse tangents
Python 2, 76 72 bytes
from fractions import*
f=lambda k:Fraction(k and(k+f(k-1))/(1-k*f(k-1)))
Use the identity:
tan(A + B) = (tan(A) + tan(B)) / (1 - tan(A) * tan(B))
We have:
f(k) = 0 if k = 0
= (k + f(k - 1)) / (1 - k * f(k - 1)) if k > 0
Try it online!
Thanks to Luis Mendo, save 4 bytes.
Mathematica, 28 bytes
Fold[+##/(1-##)&,0,Range@#]&
Try it online!
A longer, but more interesting approach (32 bytes):
Im@#/Re@#&@Product[1+n I,{n,#}]&
Try it online!
M, 11 bytes
×C÷@+
R0;ç/
Try it online!
Uses the OEIS formula x(n) = (x(n-1)+n)/(1-n*x(n-1))
with x(0) = 0
.