Geolocation closest location(lat, long) from my position
Here is a basic code example using HTML5 geolocation to get the user's position. It then calls NearestCity()
and calculates the distance (km) from the location to each city. I passed on using the Haversine formulae and instead used the simpler Pythagoras formulae and an equirectangular projection to adjust for the curvature in longitude lines.
// Get User's Coordinate from their Browser
window.onload = function() {
// HTML5/W3C Geolocation
if (navigator.geolocation) {
navigator.geolocation.getCurrentPosition(UserLocation);
}
// Default to Washington, DC
else
NearestCity(38.8951, -77.0367);
}
// Callback function for asynchronous call to HTML5 geolocation
function UserLocation(position) {
NearestCity(position.coords.latitude, position.coords.longitude);
}
// Convert Degress to Radians
function Deg2Rad(deg) {
return deg * Math.PI / 180;
}
function PythagorasEquirectangular(lat1, lon1, lat2, lon2) {
lat1 = Deg2Rad(lat1);
lat2 = Deg2Rad(lat2);
lon1 = Deg2Rad(lon1);
lon2 = Deg2Rad(lon2);
var R = 6371; // km
var x = (lon2 - lon1) * Math.cos((lat1 + lat2) / 2);
var y = (lat2 - lat1);
var d = Math.sqrt(x * x + y * y) * R;
return d;
}
var lat = 20; // user's latitude
var lon = 40; // user's longitude
var cities = [
["city1", 10, 50, "blah"],
["city2", 40, 60, "blah"],
["city3", 25, 10, "blah"],
["city4", 5, 80, "blah"]
];
function NearestCity(latitude, longitude) {
var minDif = 99999;
var closest;
for (index = 0; index < cities.length; ++index) {
var dif = PythagorasEquirectangular(latitude, longitude, cities[index][1], cities[index][2]);
if (dif < minDif) {
closest = index;
minDif = dif;
}
}
// echo the nearest city
alert(cities[closest]);
}
With HTML5, you can pull the location of the user and then compares this example using a Haversine function (function below taken from here):
function getDistanceFromLatLonInKm(lat1,lon1,lat2,lon2) {
var R = 6371; // Radius of the earth in km
var dLat = deg2rad(lat2-lat1); // deg2rad below
var dLon = deg2rad(lon2-lon1);
var a =
Math.sin(dLat/2) * Math.sin(dLat/2) +
Math.cos(deg2rad(lat1)) * Math.cos(deg2rad(lat2)) *
Math.sin(dLon/2) * Math.sin(dLon/2)
;
var c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a));
var d = R * c; // Distance in km
return d;
}
function deg2rad(deg) {
return deg * (Math.PI/180)
}