Given three a-triangle-sidelengths $a,b,c$. Prove that $3\left((a^{2}b(a-b)+b^{2}c(b-c)+c^{2}a(c-a)\right)\geqq b(a+b-c)(a-c)(c-b)$ .

Consider three cases.

  1. $a=\max\{a,b,c\}$, $a=x+u+v,$ $b=x+u$ and $c=x+v$, where $x>0$, $u\geq0$ and $v\geq0.$

Thus, $$3[a^2b(a-b)+b^2c(b-c)+c^2a(c-a)]-b(a+b-c)(a-c)(c-b)=$$ $$=(4u^2-4uv+3v^2)x^2+3(2u^3+u^2v-uv^2+v^3)x+2u^3(u+2v)\geq0;$$

  1. $b=\max\{a,b,c\}$, $b=x+u+v,$ $a=x+u$ and $c=x+v$, where $x>0$, $u\geq0$ and $v\geq0.$

Thus, $$3[a^2b(a-b)+b^2c(b-c)+c^2a(c-a)]-b(a+b-c)(a-c)(c-b)=$$ $$=(4u^2-4uv+3v^2)x^2+(6u^3-5u^2v+5uv^2+3v^3)x+2u(u^3-uv^2+3v^3)\geq0$$ and

  1. $c=\max\{a,b,c\}$, $c=x+u+v,$ $a=x+u$ and $b=x+v$, where $x>0$, $u\geq0$ and $v\geq0.$

Thus, $$3[a^2b(a-b)+b^2c(b-c)+c^2a(c-a)]-b(a+b-c)(a-c)(c-b)=$$ $$=(3u^2-2uv+3v^2)x^2+(3u^3+6u^2v-2uv^2+3v^3)x+6u^3v\geq0$$ and we are done!

Actually, the following stronger inequality is also true.

Let $a$, $b$ and $c$ be sides-lengths of a triangle. Prove that: $$a^2b(a-b)+b^2c(b-c)+c^2a(c-a)\geq b(a+b-c)(a-c)(c-b).$$


I found a nice identity to prove this!

$$3\left ( a^{2}b(a- b)+ b^{2}c(b- c)+ c^{2}a(c- a) \right )- b(a+ b- c)(a- c)(c- b)$$

$$=(a + b - c)(a + c)(a - c)^2 + (a + b - c)( c + b-a)(a - b)^2 + ( c + b-a)(2\,a - b + c)( b-c)^2 \geqq 0$$

By the way$,$ with $k=constant, k \in [0,1]$ and $a,b,c$ is three side of the triangle$:$

$$\sum\,\it{a}^{\,\it{2}}\it{b}\it{(}\,\,\it{a}- \it{b}\,\,\it{)}\geqq \it{k}\,.\,\it{b}\it{(}\,\,\it{a}+ \it{b}- \it{c}\,\,\it{)}\it{(}\,\,\it{a}- \it{c}\,\,\it{)}\it{(}\,\,\it{c}- \it{b}\,\,\it{)}$$

Proof: $$\text{LHS}-\text{RHS}=k \left\{ b \left( a+b-c \right) \left( a-c \right) ^{2}+a \left( b+c- a \right) \left( b-c \right) ^{2} \right\} + \left( 1-k \right) \left\{ {a}^{2}b \left( a-b \right) +{b}^{2}c \left( -c+b \right) +{c} ^{2}a \left( -a+c \right) \right\}$$

Where the last inequality$:$ $$ {a}^{2}b \left( a-b \right) +{b}^{2}c \left( -c+b \right) +{c} ^{2}a \left( -a+c \right) \geqq 0$$ is IMO 1983!

You can see also here.