Menu
NEWBEDEV
Python
Javascript
Linux
Cheat sheet
NEWBEDEV
Python 1
Javascript
Linux
Cheat sheet
Contact
New posts in Buffalo Way
Prove $\sqrt{a + ab} + \sqrt{b} + \sqrt{c} \ge 3$ for $c = \min(a, b, c)$ and $ab + bc + ca = 2$
May 09, 2021
Find maximum $k \in \mathbb{R}^{+}$ such that $ \frac{a^3}{(b-c)^2} + \frac{b^3}{(c-a)^2} + \frac{c^3}{(a-b)^2} \geq k (a+b+c) $
May 08, 2021
Prove $(a^2+b^2+c^2)^3 \geqq 9(a^3+b^3+c^3)$
May 08, 2021
$3\geq\sum\limits_{cyc}\frac{(x+y)^{2}x^{2}}{(x^{2}+y^{2})^{2}}$ with $x,y,z >0$
May 08, 2021
If $x,y,z>0.$Prove: $(x+y+z) \left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z} \right) \geq9\sqrt[]\frac{x^2+y^2+z^2}{xy+yz+zx}$
May 07, 2021
Proving a much stronger version of AM-GM for three variables
May 07, 2021
Given three a-triangle-sidelengths $a,b,c$. Prove that $3\left((a^{2}b(a-b)+b^{2}c(b-c)+c^{2}a(c-a)\right)\geqq b(a+b-c)(a-c)(c-b)$ .
May 06, 2021
Turkevicius inequality
May 03, 2021
Proving $\left(\frac{a}{a+b+c}\right)^2+\left(\frac{b}{b+c+d}\right)^2+\left(\frac{c}{c+d+a}\right)^2+\left(\frac{d}{d+a+b}\right)^2\ge\frac{4}{9}$
May 01, 2021
A cyclic inequality $\sum\limits_{cyc}{\sqrt{3x+\frac{1}{y}}}\geqslant 6$
Apr 25, 2021