gotchas where Numpy differs from straight python?

I think this one is funny:

>>> import numpy as n
>>> a = n.array([[1,2],[3,4]])
>>> a[1], a[0] = a[0], a[1]
>>> a
array([[1, 2],
       [1, 2]])

For Python lists on the other hand this works as intended:

>>> b = [[1,2],[3,4]]
>>> b[1], b[0] = b[0], b[1]
>>> b
[[3, 4], [1, 2]]

Funny side note: numpy itself had a bug in the shuffle function, because it used that notation :-) (see here).

The reason is that in the first case we are dealing with views of the array, so the values are overwritten in-place.


The biggest gotcha for me was that almost every standard operator is overloaded to distribute across the array.

Define a list and an array

>>> l = range(10)
>>> l
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> import numpy
>>> a = numpy.array(l)
>>> a
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

Multiplication duplicates the python list, but distributes over the numpy array

>>> l * 2
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> a * 2
array([ 0,  2,  4,  6,  8, 10, 12, 14, 16, 18])

Addition and division are not defined on python lists

>>> l + 2
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: can only concatenate list (not "int") to list
>>> a + 2
array([ 2,  3,  4,  5,  6,  7,  8,  9, 10, 11])
>>> l / 2.0
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for /: 'list' and 'float'
>>> a / 2.0
array([ 0. ,  0.5,  1. ,  1.5,  2. ,  2.5,  3. ,  3.5,  4. ,  4.5])

Numpy overloads to treat lists like arrays sometimes

>>> a + a
array([ 0,  2,  4,  6,  8, 10, 12, 14, 16, 18])
>>> a + l
array([ 0,  2,  4,  6,  8, 10, 12, 14, 16, 18])

Because __eq__ does not return a bool, using numpy arrays in any kind of containers prevents equality testing without a container-specific work around.

Example:

>>> import numpy
>>> a = numpy.array(range(3))
>>> b = numpy.array(range(3))
>>> a == b
array([ True,  True,  True], dtype=bool)
>>> x = (a, 'banana')
>>> y = (b, 'banana')
>>> x == y
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
ValueError: The truth value of an array with more than one element is ambiguous. Use a.any() or a.all()

This is a horrible problem. For example, you cannot write unittests for containers which use TestCase.assertEqual() and must instead write custom comparison functions. Suppose we write a work-around function special_eq_for_numpy_and_tuples. Now we can do this in a unittest:

x = (array1, 'deserialized')
y = (array2, 'deserialized')
self.failUnless( special_eq_for_numpy_and_tuples(x, y) )

Now we must do this for every container type we might use to store numpy arrays. Furthermore, __eq__ might return a bool rather than an array of bools:

>>> a = numpy.array(range(3))
>>> b = numpy.array(range(5))
>>> a == b
False

Now each of our container-specific equality comparison functions must also handle that special case.

Maybe we can patch over this wart with a subclass?

>>> class SaneEqualityArray (numpy.ndarray):
...   def __eq__(self, other):
...     return isinstance(other, SaneEqualityArray) and self.shape == other.shape and (numpy.ndarray.__eq__(self, other)).all()
... 
>>> a = SaneEqualityArray( (2, 3) )
>>> a.fill(7)
>>> b = SaneEqualityArray( (2, 3) )
>>> b.fill(7)
>>> a == b
True
>>> x = (a, 'banana')
>>> y = (b, 'banana')
>>> x == y
True
>>> c = SaneEqualityArray( (7, 7) )
>>> c.fill(7)
>>> a == c
False

That seems to do the right thing. The class should also explicitly export elementwise comparison, since that is often useful.

Tags:

Python

Numpy