How can I render an 'atmosphere' over a rendering of the Earth in Three.js?
Well an old and already answered question but I wanted to add my solution for beginner consideration out there. Have playing along Atmospheric scattering and GLSL for a long time and developed this VEEERRRYYY Simplified version of Atmospheric scattering (if animation stops refresh page or view the GIF in something more decend):
[
- planet is and ellipsoid (center
x,y,
z and radiusesrx,ry,rz
) - atmosphere is also ellipsoid (the same but bigger by atmosphere height)
- all render is done normally but on top of that is added 1 pass for near observer planet
- that pass is single quad covering whole screen
- inside fragment it computes the intersection of pixel ray with these 2 ellipsoids
- take the visible part (not behind, not after ground)
- compute the ray length inside atmosphere
- distort original color as function of
r,g,b
scaled params by ray length (something like integrating along the path)- some color is taken some given ...
- greatly affects color so its possible to simulate different atmospheres by just few attributes
- it work well inside and also outside the atmosphere (from distance)
- can add close stars as light source (i use max 3 star system)
the result is stunning see images below:
Vertex:
/* SSH GLSL Atmospheric Ray light scattering ver 3.0
glEnable(GL_BLEND);
glBlendFunc(GL_ONE,GL_ONE);
use with single quad covering whole screen
no Modelview/Projection/Texture matrixes used
gl_Normal is camera direction in ellipsoid space
gl_Vertex is pixel in ellipsoid space
gl_Color is pixel pos in screen space <-1,+1>
const int _lights=3;
uniform vec3 light_dir[_lights]; // direction to local star in ellipsoid space
uniform vec3 light_col[_lights]; // local star color * visual intensity
uniform vec4 light_posr[_lights]; // local star position and radius^-2 in ellipsoid space
uniform vec4 B0; // atmosphere scattering coefficient (affects color) (r,g,b,-)
[ToDo:]
add light map texture for light source instead of uniform star colide parameters
- all stars and distant planets as dots
- near planets ??? maybe too slow for reading pixels
aspect ratio correction
*/
varying vec3 pixel_nor; // camera direction in ellipsoid space
varying vec4 pixel_pos; // pixel in ellipsoid space
void main(void)
{
pixel_nor=gl_Normal;
pixel_pos=gl_Vertex;
gl_Position=gl_Color;
}
Fragment:
varying vec3 pixel_nor; // camera direction in ellipsoid space
varying vec4 pixel_pos; // pixel in ellipsoid space
uniform vec3 planet_r; // rx^-2,ry^-2,rz^-2 - surface
uniform vec3 planet_R; // Rx^-2,Ry^-2,Rz^-2 - atmosphere
uniform float planet_h; // atmoshere height [m]
uniform float view_depth; // max. optical path length [m] ... saturation
// lights are only for local stars-atmosphere ray colision to set start color to star color
const int _lights=3;
uniform vec3 light_dir[_lights]; // direction to local star in ellipsoid space
uniform vec3 light_col[_lights]; // local star color * visual intensity
uniform vec4 light_posr[_lights]; // local star position and radius^-2 in ellipsoid space
uniform vec4 B0; // atmosphere scattering coefficient (affects color) (r,g,b,-)
// compute length of ray(p0,dp) to intersection with ellipsoid((0,0,0),r) -> view_depth_l0,1
// where r.x is elipsoid rx^-2, r.y = ry^-2 and r.z=rz^-2
float view_depth_l0=-1.0,view_depth_l1=-1.0;
bool _view_depth(vec3 p0,vec3 dp,vec3 r)
{
float a,b,c,d,l0,l1;
view_depth_l0=-1.0;
view_depth_l1=-1.0;
a=(dp.x*dp.x*r.x)
+(dp.y*dp.y*r.y)
+(dp.z*dp.z*r.z); a*=2.0;
b=(p0.x*dp.x*r.x)
+(p0.y*dp.y*r.y)
+(p0.z*dp.z*r.z); b*=2.0;
c=(p0.x*p0.x*r.x)
+(p0.y*p0.y*r.y)
+(p0.z*p0.z*r.z)-1.0;
d=((b*b)-(2.0*a*c));
if (d<0.0) return false;
d=sqrt(d);
l0=(-b+d)/a;
l1=(-b-d)/a;
if (abs(l0)>abs(l1)) { a=l0; l0=l1; l1=a; }
if (l0<0.0) { a=l0; l0=l1; l1=a; }
if (l0<0.0) return false;
view_depth_l0=l0;
view_depth_l1=l1;
return true;
}
// determine if ray (p0,dp) hits a sphere ((0,0,0),r)
// where r is (sphere radius)^-2
bool _star_colide(vec3 p0,vec3 dp,float r)
{
float a,b,c,d,l0,l1;
a=(dp.x*dp.x*r)
+(dp.y*dp.y*r)
+(dp.z*dp.z*r); a*=2.0;
b=(p0.x*dp.x*r)
+(p0.y*dp.y*r)
+(p0.z*dp.z*r); b*=2.0;
c=(p0.x*p0.x*r)
+(p0.y*p0.y*r)
+(p0.z*p0.z*r)-1.0;
d=((b*b)-(2.0*a*c));
if (d<0.0) return false;
d=sqrt(d);
l0=(-b+d)/a;
l1=(-b-d)/a;
if (abs(l0)>abs(l1)) { a=l0; l0=l1; l1=a; }
if (l0<0.0) { a=l0; l0=l1; l1=a; }
if (l0<0.0) return false;
return true;
}
// compute atmosphere color between ellipsoids (planet_pos,planet_r) and (planet_pos,planet_R) for ray(pixel_pos,pixel_nor)
vec3 atmosphere()
{
const int n=8;
const float _n=1.0/float(n);
int i;
bool b0,b1;
vec3 p0,p1,dp,p,c,b;
// c - color of pixel from start to end
float l0,l1,l2,h,dl;
c=vec3(0.0,0.0,0.0);
b0=_view_depth(pixel_pos.xyz,pixel_nor,planet_r);
if ((b0)&&(view_depth_l0>0.0)&&(view_depth_l1<0.0)) return c;
l0=view_depth_l0;
b1=_view_depth(pixel_pos.xyz,pixel_nor,planet_R);
l1=view_depth_l0;
l2=view_depth_l1;
dp=pixel_nor;
p0=pixel_pos.xyz;
if (!b0)
{ // outside surface
if (!b1) return c; // completly outside planet
if (l2<=0.0) // inside atmosphere to its boundary
{
l0=l1;
}
else{ // throu atmosphere from boundary to boundary
p0=p0+(l1*dp);
l0=l2-l1;
}
// if a light source is in visible path then start color is light source color
for (i=0;i<_lights;i++)
if (light_posr[i].a<=1.0)
if (_star_colide(p0-light_posr[i].xyz,dp,light_posr[i].a))
c+=light_col[i];
}
else{ // into surface
if (l0<l1) b1=false; // atmosphere is behind surface
if (!b1) // inside atmosphere to surface
{
l0=l0;
}
else{ // from atmosphere boundary to surface
p0=p0+(l1*dp);
l0=l0-l1;
}
}
dp*=l0;
p1=p0+dp;
dp*=_n;
/*
p=normalize(p1);
h=0.0; l2=0.0;
for (i=0;i<_lights;i++)
if (light_posr[i].a<=1.0)
{
dl=dot(pixel_nor,light_dir[i]); // cos(ang: light-eye)
if (dl<0.0) dl=0.0;
h+=dl;
dl=dot(p,light_dir[i]); // normal shading
if (dl<0.0) dl=0.0;
l2+=dl;
}
if (h>1.0) h=1.0;
if (l2>1.0) l2=1.0;
h=0.5*(2.0+(h*h));
*/
float qqq=dot(normalize(p1),light_dir[0]);
dl=l0*_n/view_depth;
for (p=p1,i=0;i<n;p-=dp,i++) // p1->p0 path throu atmosphere from ground
{
_view_depth(p,normalize(p),planet_R); // view_depth_l0=depth above atmosphere top [m]
h=exp(view_depth_l0/planet_h)/2.78;
b=B0.rgb*h*dl;
c.r*=1.0-b.r;
c.g*=1.0-b.g;
c.b*=1.0-b.b;
c+=b*qqq;
}
if (c.r<0.0) c.r=0.0;
if (c.g<0.0) c.g=0.0;
if (c.b<0.0) c.b=0.0;
h=0.0;
if (h<c.r) h=c.r;
if (h<c.g) h=c.g;
if (h<c.b) h=c.b;
if (h>1.0)
{
h=1.0/h;
c.r*=h;
c.g*=h;
c.b*=h;
}
return c;
}
void main(void)
{
gl_FragColor.rgb=atmosphere();
}
Sorry but its a really old source of my ... should be probably converted to core profile
[Edit 1] sorry forget to add my input scattering constants for Earth atmosphere
double view_depth=1000000.0; // [m] ... longer path is saturated atmosphere color
double ha=40000.0; // [m] ... usable atmosphere height (higher is too low pressure)
// this is how B0 should be computed (for real atmospheric scattering with nested volume integration)
// const float lambdar=650.0*0.000000001; // wavelengths for R,G,B rays
// const float lambdag=525.0*0.000000001;
// const float lambdab=450.0*0.000000001;
// double r=1.0/(lambdar*lambdar*lambdar*lambdar); // B0 coefficients
// double g=1.0/(lambdag*lambdag*lambdag*lambdag);
// double b=1.0/(lambdab*lambdab*lambdab*lambdab);
// and these are my empirical coefficients for earth like
// blue atmosphere with my simplified integration style
// images above are rendered with this:
float r=0.198141888310295;
float g=0.465578010163675;
float b=0.862540960504986;
float B0=2.50000E-25;
i=glGetUniformLocation(ShaderProgram,"planet_h"); glUniform1f(i,ha);
i=glGetUniformLocation(ShaderProgram,"view_depth"); glUniform1f(i,view_depth);
i=glGetUniformLocation(ShaderProgram,"B0"); glUniform4f(i,r,g,b,B0);
// all other atributes are based on position and size of planet and are
// pretty straightforward so here is just the earth size i use ...
double r_equator=6378141.2; // [m]
double r_poles=6356754.8; // [m]
[edit2] 3.9.2014 new source code
I had some time recently to implement zoom to mine engine and figured out that original source code is not very precise from distance above 0.002 AU. Without Zoom it is just a few pixels so nothing is seen, but with zoom all changes so I tried to improve accuracy as much as I could.
- here ray and ellipsoid intersection accuracy improvement is the related question to this
After some more tweaks I get it to be usable up to 25.0 AU and with interpolation artifacts up to 50.0-100.0 AU. That is limit for current HW because I can not pass non flat fp64
to interpolators from vertex to fragment. One way around could be to move the coordinate system transform to fragment but haven't tried it yet. Here are some changes:
- new source uses 64 bit floats
- and add
uniform int lights
which is the count of used lights - also some changes in B0 meaning (they are no longer wavelength dependent constant but color instead) so you need to change uniform value fill in CPU code slightly.
- some performance improvements was added
[vertex]
/* SSH GLSL Atmospheric Ray light scattering ver 3.1
glEnable(GL_BLEND);
glBlendFunc(GL_ONE,GL_ONE_MINUS_SRC_ALPHA);
use with single quad covering whole screen
no Modelview/Projection/Texture matrixes used
gl_Normal is camera direction in ellipsoid space
gl_Vertex is pixel in ellipsoid space
gl_Color is pixel pos in screen space <-1,+1>
const int _lights=3;
uniform int lights; // actual number of lights
uniform vec3 light_dir[_lights]; // direction to local star in ellipsoid space
uniform vec3 light_col[_lights]; // local star color * visual intensity
uniform vec4 light_posr[_lights]; // local star position and radius^-2 in ellipsoid space
uniform vec4 B0; // atmosphere scattering coefficient (affects color) (r,g,b,-)
[ToDo:]
add light map texture for light source instead of uniform star colide parameters
- all stars and distant planets as dots
- near planets ??? maybe too slow for reading pixels
aspect ratio correction
*/
varying vec3 pixel_nor; // camera direction in ellipsoid space
varying vec4 pixel_pos; // pixel in ellipsoid space
varying vec4 pixel_scr; // pixel in screen space <-1,+1>
varying vec3 p_r; // rx,ry,rz
uniform vec3 planet_r; // rx^-2,ry^-2,rz^-2 - surface
void main(void)
{
p_r.x=1.0/sqrt(planet_r.x);
p_r.y=1.0/sqrt(planet_r.y);
p_r.z=1.0/sqrt(planet_r.z);
pixel_nor=gl_Normal;
pixel_pos=gl_Vertex;
pixel_scr=gl_Color;
gl_Position=gl_Color;
}
[fragment]
#extension GL_ARB_gpu_shader_fp64 : enable
double abs(double x) { if (x<0.0) x=-x; return x; }
varying vec3 pixel_nor; // camera direction in ellipsoid space
varying vec4 pixel_pos; // pixel in ellipsoid space
varying vec4 pixel_scr; // pixel in screen space
varying vec3 p_r; // rx,ry,rz
uniform vec3 planet_r; // rx^-2,ry^-2,rz^-2 - surface
uniform vec3 planet_R; // Rx^-2,Ry^-2,Rz^-2 - atmosphere
uniform float planet_h; // atmoshere height [m]
uniform float view_depth; // max. optical path length [m] ... saturation
// lights are only for local stars-atmosphere ray colision to set start color to star color
const int _lights=3;
uniform int lights; // actual number of lights
uniform vec3 light_dir[_lights]; // direction to local star in ellipsoid space
uniform vec3 light_col[_lights]; // local star color * visual intensity
uniform vec4 light_posr[_lights]; // local star position and radius^-2 in ellipsoid space
uniform vec4 B0; // atmosphere scattering color coefficients (r,g,b,ambient)
// compute length of ray(p0,dp) to intersection with ellipsoid((0,0,0),r) -> view_depth_l0,1
// where r.x is elipsoid rx^-2, r.y = ry^-2 and r.z=rz^-2
const double view_depth_max=100000000.0; // > max view depth
double view_depth_l0=-1.0, // view_depth_l0 first hit
view_depth_l1=-1.0; // view_depth_l1 second hit
bool _view_depth_l0=false;
bool _view_depth_l1=false;
bool _view_depth(vec3 _p0,vec3 _dp,vec3 _r)
{
dvec3 p0,dp,r;
double a,b,c,d,l0,l1;
view_depth_l0=-1.0; _view_depth_l0=false;
view_depth_l1=-1.0; _view_depth_l1=false;
// conversion to double
p0=dvec3(_p0);
dp=dvec3(_dp);
r =dvec3(_r );
// quadratic equation a.l.l+b.l+c=0; l0,l1=?;
a=(dp.x*dp.x*r.x)
+(dp.y*dp.y*r.y)
+(dp.z*dp.z*r.z);
b=(p0.x*dp.x*r.x)
+(p0.y*dp.y*r.y)
+(p0.z*dp.z*r.z); b*=2.0;
c=(p0.x*p0.x*r.x)
+(p0.y*p0.y*r.y)
+(p0.z*p0.z*r.z)-1.0;
// discriminant d=sqrt(b.b-4.a.c)
d=((b*b)-(4.0*a*c));
if (d<0.0) return false;
d=sqrt(d);
// standard solution l0,l1=(-b +/- d)/2.a
a*=2.0;
l0=(-b+d)/a;
l1=(-b-d)/a;
// alternative solution q=-0.5*(b+sign(b).d) l0=q/a; l1=c/q; (should be more accurate sometimes)
// if (b<0.0) d=-d; d=-0.5*(b+d);
// l0=d/a;
// l1=c/d;
// sort l0,l1 asc
if ((l0<0.0)||((l1<l0)&&(l1>=0.0))) { a=l0; l0=l1; l1=a; }
// exit
if (l1>=0.0) { view_depth_l1=l1; _view_depth_l1=true; }
if (l0>=0.0) { view_depth_l0=l0; _view_depth_l0=true; return true; }
return false;
}
// determine if ray (p0,dp) hits a sphere ((0,0,0),r)
// where r is (sphere radius)^-2
bool _star_colide(vec3 _p0,vec3 _dp,float _r)
{
dvec3 p0,dp,r;
double a,b,c,d,l0,l1;
// conversion to double
p0=dvec3(_p0);
dp=dvec3(_dp);
r =dvec3(_r );
// quadratic equation a.l.l+b.l+c=0; l0,l1=?;
a=(dp.x*dp.x*r)
+(dp.y*dp.y*r)
+(dp.z*dp.z*r);
b=(p0.x*dp.x*r)
+(p0.y*dp.y*r)
+(p0.z*dp.z*r); b*=2.0;
c=(p0.x*p0.x*r)
+(p0.y*p0.y*r)
+(p0.z*p0.z*r)-1.0;
// discriminant d=sqrt(b.b-4.a.c)
d=((b*b)-(4.0*a*c));
if (d<0.0) return false;
d=sqrt(d);
// standard solution l0,l1=(-b +/- d)/2.a
a*=2.0;
l0=(-b+d)/a;
l1=(-b-d)/a;
// alternative solution q=-0.5*(b+sign(b).d) l0=q/a; l1=c/q; (should be more accurate sometimes)
// if (b<0.0) d=-d; d=-0.5*(b+d);
// l0=d/a;
// l1=c/d;
// sort l0,l1 asc
if (abs(l0)>abs(l1)) { a=l0; l0=l1; l1=a; }
if (l0<0.0) { a=l0; l0=l1; l1=a; }
if (l0<0.0) return false;
return true;
}
// compute atmosphere color between ellipsoids (planet_pos,planet_r) and (planet_pos,planet_R) for ray(pixel_pos,pixel_nor)
vec4 atmosphere()
{
const int n=8;
const float _n=1.0/float(n);
int i;
bool b0,b1;
vec3 p0,p1,dp,p,b;
vec4 c; // c - color of pixel from start to end
float h,dl,ll;
double l0,l1,l2;
bool e0,e1,e2;
c=vec4(0.0,0.0,0.0,0.0); // a=0.0 full background color, a=1.0 no background color (ignore star)
b1=_view_depth(pixel_pos.xyz,pixel_nor,planet_R);
if (!b1) return c; // completly outside atmosphere
e1=_view_depth_l0; l1=view_depth_l0; // first atmosphere hit
e2=_view_depth_l1; l2=view_depth_l1; // second atmosphere hit
b0=_view_depth(pixel_pos.xyz,pixel_nor,planet_r);
e0=_view_depth_l0; l0=view_depth_l0; // first surface hit
if ((b0)&&(view_depth_l1<0.0)) return c; // under ground
// set l0 to view depth and p0 to start point
dp=pixel_nor;
p0=pixel_pos.xyz;
if (!b0) // outside surface
{
if (!e2) // inside atmosphere to its boundary
{
l0=l1;
}
else{ // throu atmosphere from boundary to boundary
p0=vec3(dvec3(p0)+(dvec3(dp)*l1));
l0=l2-l1;
}
// if a light source is in visible path then start color is light source color
for (i=0;i<lights;i++)
if (_star_colide(p0.xyz-light_posr[i].xyz,dp.xyz,light_posr[i].a*0.75)) // 0.75 is enlargment to hide star texture corona
{
c.rgb+=light_col[i];
c.a=1.0; // ignore already drawed local star color
}
}
else{ // into surface
if (l1<l0) // from atmosphere boundary to surface
{
p0=vec3(dvec3(p0)+(dvec3(dp)*l1));
l0=l0-l1;
}
else{ // inside atmosphere to surface
l0=l0;
}
}
// set p1 to end of view depth, dp to intergral step
p1=vec3(dvec3(p0)+(dvec3(dp)*l0)); dp=p1-p0;
dp*=_n;
dl=float(l0)*_n/view_depth;
ll=B0.a; for (i=0;i<lights;i++) // compute normal shaded combined light sources into ll
ll+=dot(normalize(p1),light_dir[0]);
for (p=p1,i=0;i<n;p-=dp,i++) // p1->p0 path throu atmosphere from ground
{
// _view_depth(p,normalize(p),planet_R); // too slow... view_depth_l0=depth above atmosphere top [m]
// h=exp(view_depth_l0/planet_h)/2.78;
b=normalize(p)*p_r; // much much faster
h=length(p-b);
h=exp(h/planet_h)/2.78;
b=B0.rgb*h*dl;
c.r*=1.0-b.r;
c.g*=1.0-b.g;
c.b*=1.0-b.b;
c.rgb+=b*ll;
}
if (c.r<0.0) c.r=0.0;
if (c.g<0.0) c.g=0.0;
if (c.b<0.0) c.b=0.0;
h=0.0;
if (h<c.r) h=c.r;
if (h<c.g) h=c.g;
if (h<c.b) h=c.b;
if (h>1.0)
{
h=1.0/h;
c.r*=h;
c.g*=h;
c.b*=h;
}
return c;
}
void main(void)
{
gl_FragColor.rgba=atmosphere();
}
[uniform values]
// Earth
re=6378141.2 // equatoreal radius r.x,r.y
rp=6356754.79506139 // polar radius r.z
planet_h=60000 // atmosphere thickness R(r.x+planet_h,r.y+planet_h,r.z+planet_h)
view_depth=250000 // max view distance before 100% scattering occur
B0.r=0.1981 // 100% scattered atmosphere color
B0.g=0.4656
B0.b=0.8625
B0.a=0.75 // overglow (sky is lighter before Sun actually rise) it is added to light dot product
// Mars
re=3397000
rp=3374919.5
ha=30000
view_depth=300000
B0.r=0.4314
B0.g=0.3216
B0.b=0.196
B0.a=0.5
For more info (and newer images) see also related:
- Is it possible to make realistic n-body solar system simulation in matter of size and mass?
[Edit3]
Here a small CPU side code that I use in my engine to render atmosphere using shader above:
if (sys->_enable_bodya) // has planet atmosphere?
if (view_depth>=0.0)
{
glColor4f(1.0,1.0,1.0,1.0);
double a,b,p[3],d[3];
sys->shd_engine.unbind();
sys->shd_scatter.bind(); // this is the atmospheric shader
if (1) //*** GLSL_uniform_supported (leftover from old GL engine version)
{
int j;
double *w;
AnsiString s;
a=re; b=rp; a=divide(1.0,a*a); b=divide(1.0,b*b); // radius of planet re equatoral and rp polar and ha is atmosphere thickness
sys->shd_scatter.set3f("planet_r",a,a,b);
a=re+ha; b=rp+ha; a=divide(1.0,a*a); b=divide(1.0,b*b);
sys->shd_scatter.set3f("planet_R" ,a,a,b);
sys->shd_scatter.set1f("planet_h" ,ha);
sys->shd_scatter.set1f("view_depth",view_depth); // visibility distance
sys->shd_scatter.set4f("B0",B0[0],B0[1],B0[2],B0[3]); // saturated atmosphere color and overglow
sys->shd_scatter.set1i("lights",sys->local_star.num); // local stars
for (j=0;j<sys->local_star.num;j++)
{
a=sys->local_star[j].r;
w=sys->local_star[j].p;
s=AnsiString().sprintf("light_posr[%i]",j);
sys->shd_scatter.set4f(s,w[0],w[1],w[2],divide(1.0,a*a));
w=sys->local_star[j].d;
s=AnsiString().sprintf("light_dir[%i]",j);
sys->shd_scatter.set3f(s,w[0],w[1],w[2]);
vector_mul(p,sys->local_star[j].col,10.0);
s=AnsiString().sprintf("light_col[%i]",j);
sys->shd_scatter.set3f(s,p[0],p[1],p[2]);
}
}
glEnable(GL_BLEND);
glBlendFunc(GL_ONE,GL_ONE_MINUS_SRC_ALPHA);
a=1.0;
b=-2.0*view.scr->views[view.scr->view].znear;
// color = pixel pos in screen space <-1,+1> ... no Projection/ModelView is used :)
// vertex = pixel pos in elypsoid space
// normal = eye-pixel direction in elypsoid space
zsort.rep0.g2l_dir(d,zsort.obj_pos0);
glDepthMask(0);
glBegin(GL_QUADS);
a=divide(1.0,view.zoom);
glColor4d(-1.0,-1.0,0.0,1.0); vector_ld(p,-a,-a,b); view.scr->fromscr(p,p); view.eye0.l2g(q,p); zsort.rep0.g2l_dir(q,q); vector_sub(p,q,d); vector_one(q,q); glNormal3dv(q); glVertex3dv(p);
glColor4d(+1.0,-1.0,0.0,1.0); vector_ld(p,+a,-a,b); view.scr->fromscr(p,p); view.eye0.l2g(q,p); zsort.rep0.g2l_dir(q,q); vector_sub(p,q,d); vector_one(q,q); glNormal3dv(q); glVertex3dv(p);
glColor4d(+1.0,+1.0,0.0,1.0); vector_ld(p,+a,+a,b); view.scr->fromscr(p,p); view.eye0.l2g(q,p); zsort.rep0.g2l_dir(q,q); vector_sub(p,q,d); vector_one(q,q); glNormal3dv(q); glVertex3dv(p);
glColor4d(-1.0,+1.0,0.0,1.0); vector_ld(p,-a,+a,b); view.scr->fromscr(p,p); view.eye0.l2g(q,p); zsort.rep0.g2l_dir(q,q); vector_sub(p,q,d); vector_one(q,q); glNormal3dv(q); glVertex3dv(p);
glEnd();
glDepthMask(1);
glDisable(GL_BLEND);
sys->shd_scatter.unbind();
sys->shd_engine.bind();
}
It is extracted from mine engine so it uses a lot of stuff you do not have, but you get the idea how the stuff is used... btw l2g
means transform from local to global coordinate, g2l
is the other way around. If _dir
is present like l2g_dir
it means the transform is handling vector instead of position so no translations. The fromscr
converts screen <-1,+1>
to 3D (camera local) and vector_one
normalizes a vector to unit one. Hope I did not forget to explain something...
What exactly are you looking for in your atmosphere? It could be as simple as rendering another slightly larger transparent sphere over the top of your globe, or it could be very very complex, actually refracting light that enters it. (Almost like subsurface scattering used in skin rendering).
I've never tried such an effect myself, but some quick Googling shows some promising results. For example, I think this effect looks fairly nice, and the author even followed it up with a more detailed variant later on. If you're interested in a more technical breakdown this technique details a lot of the theoretical background. I'm sure there's more, you've just got to poke around a bit. (Truth be told I wasn't aware this was such a popular rendering topic!)
If you're having trouble with some aspect of those techniques specifically as applies to Three.js don't hesitate to ask!
[UPDATE]
Ah, sorry. Yeah, that's a bit much to throw you into without prior shader knowledge.
The code on the second link is actually a DirectX FX file, the core code being HLSL, so it's not something that would simply plug into WebGL but the two shader formats are similar enough that it's typically not an issue to translate between them. If you actually know shaders, that is. I would recommend reading up on how shaders work before trying to dive into a complicated effect like this.
I'd start with something simple like this tutorial, which simply talks about how to get a basic shader running with Three.js. Once you know how to get a shader working with Three.js and GLSL tutorials (like this one) will give you the basics of how a shader works and what you can do with it.
I know that seems like a lot of work up front, but if you want to do advanced visual effects in WebGL (and this certainly fits the bill of advanced effects) you absolutely must understand shaders!
Then again, if you're looking for a quick fix there's always that transparent sphere option I was talking about. :)