How can you turn an index array into a mask array in Numpy?
For a single dimension, try:
n = (15,)
index_array = [2, 5, 7]
mask_array = numpy.zeros(n)
mask_array[index_array] = 1
For more than one dimension, convert your n-dimensional indices into one-dimensional ones, then use ravel:
n = (15, 15)
index_array = [[1, 4, 6], [10, 11, 2]] # you may need to transpose your indices!
mask_array = numpy.zeros(n)
flat_index_array = np.ravel_multi_index(
index_array,
mask_array.shape)
numpy.ravel(mask_array)[flat_index_array] = 1
Here's one way:
In [1]: index_array = np.array([3, 4, 7, 9])
In [2]: n = 15
In [3]: mask_array = np.zeros(n, dtype=int)
In [4]: mask_array[index_array] = 1
In [5]: mask_array
Out[5]: array([0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0])
If the mask is always a range, you can eliminate index_array
, and assign 1
to a slice:
In [6]: mask_array = np.zeros(n, dtype=int)
In [7]: mask_array[5:10] = 1
In [8]: mask_array
Out[8]: array([0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0])
If you want an array of boolean values instead of integers, change the dtype
of mask_array
when it is created:
In [11]: mask_array = np.zeros(n, dtype=bool)
In [12]: mask_array
Out[12]:
array([False, False, False, False, False, False, False, False, False,
False, False, False, False, False, False], dtype=bool)
In [13]: mask_array[5:10] = True
In [14]: mask_array
Out[14]:
array([False, False, False, False, False, True, True, True, True,
True, False, False, False, False, False], dtype=bool)