How to calculate $\dfrac{\partial a^{\rm T}A^{-\rm T}bb^{\rm T}A^{-1}a}{\partial A}$?

The problem was just modified. If there is b (as now), then the solution would be much simpler. Note that $$a^{\rm T}A^{-\rm T}b = b^{\rm T}A^{-1}a$$ since they are numbers and transposing one of them would give you the other. Hence from chain rule, $$\frac{\partial}{\partial A}(a^{\rm T}A^{-\rm T}bb^{\rm T}A^{-1}a)=2(b^{\rm T}A^{-1}a)\frac{\partial}{\partial A}(b^{\rm T}A^{-1}a)$$ Also note that when we take derivative with respect to $A$, both $a$ and $b$ are treated as constants. Then $$\frac{\partial}{\partial A}(b^{\rm T}A^{-1}a)=b^{\rm T}\frac{\partial A^{-1}}{\partial A}a$$ Finally it remains to calculate $\partial A^{-1}/\partial A$. From the identity $$AA^{-1} = I$$ taking derivative with respect to $A$, we obtain $$\frac{\partial}{\partial A}(AA^{-1})=IA^{-1}+A\frac{\partial A^{-1}}{\partial A}=0$$ Thus $$\frac{\partial A^{-1}}{\partial A}=-A^{-2}.$$


Hint

Name $\phi_1 : A \mapsto A^{-1}$, $\phi_2 : A \mapsto b^T A a$ and $\phi_3: A \mapsto A^T A$. Note that your map $\phi$ is $\phi = \phi_3 \circ \phi_2 \circ \phi_1$.

You can then use the chain rule $\phi^\prime = \phi_3^\prime \cdot \phi_2^\prime \cdot \phi_1^\prime$, based on $\phi_1^\prime(A).H =-A^{-1}HA^{-1}$, $\phi_2^\prime(A).H = b^T H a$ and $\phi_3^\prime(A).H = 2A^T H$.

You’ll finally get:

$$\frac{\partial \phi}{\partial A}.H = -2 (b^TA^{-1}a)^Tb^TA^{-1}HA^{-1}a =-2a^T\left(A^{-1}\right)^T bb^T A^{-1}HA^{-1}a$$