How to check if float pandas column contains only integer numbers?
If you want to check multiple float columns in your dataframe, you can do the following:
col_should_be_int = df.select_dtypes(include=['float']).applymap(float.is_integer).all()
float_to_int_cols = col_should_be_int[col_should_be_int].index
df.loc[:, float_to_int_cols] = df.loc[:, float_to_int_cols].astype(int)
Keep in mind that a float column, containing all integers will not get selected if it has np.NaN
values. To cast float columns with missing values to integer, you need to fill/remove missing values, for example, with median imputation:
float_cols = df.select_dtypes(include=['float'])
float_cols = float_cols.fillna(float_cols.median().round()) # median imputation
col_should_be_int = float_cols.applymap(float.is_integer).all()
float_to_int_cols = col_should_be_int[col_should_be_int].index
df.loc[:, float_to_int_cols] = float_cols[float_to_int_cols].astype(int)
Comparison with astype(int)
Tentatively convert your column to int
and test with np.array_equal
:
np.array_equal(df.v, df.v.astype(int))
True
float.is_integer
You can use this python function in conjunction with an apply
:
df.v.apply(float.is_integer).all()
True
Or, using python's all
in a generator comprehension, for space efficiency:
all(x.is_integer() for x in df.v)
True
Here's a simpler, and probably faster, approach:
(df[col] % 1 == 0).all()
To ignore nulls:
(df[col].fillna(-9999) % 1 == 0).all()