How to create Pandas groupby plot with subplots?
If you have a series with multiindex. Here's another solution for the wanted graph.
df.unstack('indentifier').plot.line(subplots=True)
You could use pd.pivot_table
to get the identifiers
in columns and then call plot()
pd.pivot_table(df.reset_index(),
index='index', columns='identifier', values='value'
).plot(subplots=True)
And, the output of
pd.pivot_table(df.reset_index(),
index='index', columns='identifier', values='value'
)
Looks like -
identifier 55 56 57
index
2007-01-01 0.781611 0.766152 0.766152
2007-02-01 0.705615 0.032134 0.032134
2008-01-01 0.026512 0.993124 0.993124
2008-02-01 0.226420 0.033860 0.033860
Here's an automated layout with lots of groups (of random fake data) and playing around with grouped.get_group(key)
will show you how to do more elegant plots.
import pandas as pd
from numpy.random import randint
import matplotlib.pyplot as plt
df = pd.DataFrame(randint(0,10,(200,6)),columns=list('abcdef'))
grouped = df.groupby('a')
rowlength = grouped.ngroups/2 # fix up if odd number of groups
fig, axs = plt.subplots(figsize=(9,4),
nrows=2, ncols=rowlength, # fix as above
gridspec_kw=dict(hspace=0.4)) # Much control of gridspec
targets = zip(grouped.groups.keys(), axs.flatten())
for i, (key, ax) in enumerate(targets):
ax.plot(grouped.get_group(key))
ax.set_title('a=%d'%key)
ax.legend()
plt.show()