How to do waffle charts in python? (square piechart)

I've put together a working example, below, which I think meets your needs. Some work is needed to fully generalize the approach, but I think you'll find that it's a good start. The trick was to use matshow() to solve your non-square problem, and to build a custom legend to easily account for categorical values.

import numpy as np
import pandas as pd
import matplotlib as mpl
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches

# Let's make a default data frame with catagories and values.
df = pd.DataFrame({ 'catagories': ['cat1', 'cat2', 'cat3', 'cat4'], 
                    'values': [84911, 14414, 10062, 8565] })
# Now, we define a desired height and width.
waffle_plot_width = 20
waffle_plot_height = 7

classes = df['catagories']
values = df['values']

def waffle_plot(classes, values, height, width, colormap):

    # Compute the portion of the total assigned to each class.
    class_portion = [float(v)/sum(values) for v in values]

    # Compute the number of tiles for each catagories.
    total_tiles = width * height
    tiles_per_class = [round(p*total_tiles) for p in class_portion]

    # Make a dummy matrix for use in plotting.
    plot_matrix = np.zeros((height, width))

    # Popoulate the dummy matrix with integer values.
    class_index = 0
    tile_index = 0

    # Iterate over each tile.
    for col in range(waffle_plot_width):
        for row in range(height):
            tile_index += 1

            # If the number of tiles populated is sufficient for this class...
            if tile_index > sum(tiles_per_class[0:class_index]):

                # ...increment to the next class.
                class_index += 1       

            # Set the class value to an integer, which increases with class.
            plot_matrix[row, col] = class_index

    # Create a new figure.
    fig = plt.figure()

    # Using matshow solves your "non-square" problem. 
    plt.matshow(plot_matrix, cmap=colormap)
    plt.colorbar()

    # Get the axis.
    ax = plt.gca()

    # Minor ticks
    ax.set_xticks(np.arange(-.5, (width), 1), minor=True);
    ax.set_yticks(np.arange(-.5, (height), 1), minor=True);

    # Gridlines based on minor ticks
    ax.grid(which='minor', color='w', linestyle='-', linewidth=2)

    # Manually constructing a legend solves your "catagorical" problem.
    legend_handles = []
    for i, c in enumerate(classes):
        lable_str = c + " (" + str(values[i]) + ")"
        color_val = colormap(float(i+1)/len(classes))
        legend_handles.append(mpatches.Patch(color=color_val, label=lable_str))

    # Add the legend. Still a bit of work to do here, to perfect centering.
    plt.legend(handles=legend_handles, loc=1, ncol=len(classes),
               bbox_to_anchor=(0., -0.1, 0.95, .10))

    plt.xticks([])
    plt.yticks([])

# Call the plotting function.
waffle_plot(classes, values, waffle_plot_height, waffle_plot_width,
            plt.cm.coolwarm)

Below is an example of the output this script produced. As you can see, it works fairly well for me, and meets all of your stated needs. Just let me know if it gives you any trouble. Enjoy!

waffle_plot


I spent a few days to build a more general solution, PyWaffle.

You can install it through

pip install pywaffle

The source code: https://github.com/gyli/PyWaffle

PyWaffle does not use matshow() method, but builds those squares one by one. That makes it easier for customization. Besides, what it provides is a custom Figure class, which returns a figure object. By updating attributes of the figure, you can basically control everything in the chart.

Some examples:

Colored or transparent background:

import matplotlib.pyplot as plt
from pywaffle import Waffle

data = {'Democratic': 48, 'Republican': 46, 'Libertarian': 3}
fig = plt.figure(
    FigureClass=Waffle, 
    rows=5, 
    values=data, 
    colors=("#983D3D", "#232066", "#DCB732"),
    title={'label': 'Vote Percentage in 2016 US Presidential Election', 'loc': 'left'},
    labels=["{0} ({1}%)".format(k, v) for k, v in data.items()],
    legend={'loc': 'lower left', 'bbox_to_anchor': (0, -0.4), 'ncol': len(data), 'framealpha': 0}
)
fig.gca().set_facecolor('#EEEEEE')
fig.set_facecolor('#EEEEEE')
plt.show()

enter image description here

Use icons replacing squares:

data = {'Democratic': 48, 'Republican': 46, 'Libertarian': 3}
fig = plt.figure(
    FigureClass=Waffle, 
    rows=5, 
    values=data, 
    colors=("#232066", "#983D3D", "#DCB732"),
    legend={'loc': 'upper left', 'bbox_to_anchor': (1, 1)},
    icons='child', icon_size=18, 
    icon_legend=True
)

enter image description here

Multiple subplots in one chart:

import pandas as pd
data = pd.DataFrame(
    {
        'labels': ['Hillary Clinton', 'Donald Trump', 'Others'],
        'Virginia': [1981473, 1769443, 233715],
        'Maryland': [1677928, 943169, 160349],
        'West Virginia': [188794, 489371, 36258],
    },
).set_index('labels')

fig = plt.figure(
    FigureClass=Waffle,
    plots={
        '311': {
            'values': data['Virginia'] / 30000,
            'labels': ["{0} ({1})".format(n, v) for n, v in data['Virginia'].items()],
            'legend': {'loc': 'upper left', 'bbox_to_anchor': (1.05, 1), 'fontsize': 8},
            'title': {'label': '2016 Virginia Presidential Election Results', 'loc': 'left'}
        },
        '312': {
            'values': data['Maryland'] / 30000,
            'labels': ["{0} ({1})".format(n, v) for n, v in data['Maryland'].items()],
            'legend': {'loc': 'upper left', 'bbox_to_anchor': (1.2, 1), 'fontsize': 8},
            'title': {'label': '2016 Maryland Presidential Election Results', 'loc': 'left'}
        },
        '313': {
            'values': data['West Virginia'] / 30000,
            'labels': ["{0} ({1})".format(n, v) for n, v in data['West Virginia'].items()],
            'legend': {'loc': 'upper left', 'bbox_to_anchor': (1.3, 1), 'fontsize': 8},
            'title': {'label': '2016 West Virginia Presidential Election Results', 'loc': 'left'}
        },
    },
    rows=5,
    colors=("#2196f3", "#ff5252", "#999999"),  # Default argument values for subplots
    figsize=(9, 5)  # figsize is a parameter of plt.figure
)

enter image description here


You can use this function for automatic creation of a waffle with simple parameters:

def create_waffle_chart(categories, values, height, width, colormap, value_sign=''):

    # compute the proportion of each category with respect to the total
    total_values = sum(values)
    category_proportions = [(float(value) / total_values) for value in values]

    # compute the total number of tiles
    total_num_tiles = width * height # total number of tiles
    print ('Total number of tiles is', total_num_tiles)

    # compute the number of tiles for each catagory
    tiles_per_category = [round(proportion * total_num_tiles) for proportion in category_proportions]

    # print out number of tiles per category
    for i, tiles in enumerate(tiles_per_category):
        print (df_dsn.index.values[i] + ': ' + str(tiles))

    # initialize the waffle chart as an empty matrix
    waffle_chart = np.zeros((height, width))

    # define indices to loop through waffle chart
    category_index = 0
    tile_index = 0

    # populate the waffle chart
    for col in range(width):
        for row in range(height):
            tile_index += 1

            # if the number of tiles populated for the current category 
            # is equal to its corresponding allocated tiles...
            if tile_index > sum(tiles_per_category[0:category_index]):
                # ...proceed to the next category
                category_index += 1       

            # set the class value to an integer, which increases with class
            waffle_chart[row, col] = category_index

    # instantiate a new figure object
    fig = plt.figure()

    # use matshow to display the waffle chart
    colormap = plt.cm.coolwarm
    plt.matshow(waffle_chart, cmap=colormap)
    plt.colorbar()

    # get the axis
    ax = plt.gca()

    # set minor ticks
    ax.set_xticks(np.arange(-.5, (width), 1), minor=True)
    ax.set_yticks(np.arange(-.5, (height), 1), minor=True)

    # add dridlines based on minor ticks
    ax.grid(which='minor', color='w', linestyle='-', linewidth=2)

    plt.xticks([])
    plt.yticks([])

    # compute cumulative sum of individual categories to match color schemes between chart and legend
    values_cumsum = np.cumsum(values)
    total_values = values_cumsum[len(values_cumsum) - 1]

    # create legend
    legend_handles = []
    for i, category in enumerate(categories):
        if value_sign == '%':
            label_str = category + ' (' + str(values[i]) + value_sign + ')'
        else:
            label_str = category + ' (' + value_sign + str(values[i]) + ')'

        color_val = colormap(float(values_cumsum[i])/total_values)
        legend_handles.append(mpatches.Patch(color=color_val, label=label_str))

    # add legend to chart
    plt.legend(
        handles=legend_handles,
        loc='lower center', 
        ncol=len(categories),
        bbox_to_anchor=(0., -0.2, 0.95, .1)
    )