How to evaluate $\int_{0}^{\infty}\ln^2(x)\ln(1+x)\ln^2\left(1+\frac{1}{x}\right)\frac{dx}{x}$
$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,} \newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\ic}{\mathrm{i}} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mrm}[1]{\mathrm{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
$\ds{I \equiv \int_{0}^{\infty}\ln^{2}\pars{x} \ln\pars{1 + x}\ln^{2}\pars{1 + {1 \over x}} \,{\dd x \over x} = {\pi^{6} \over 60} + 6\,\zeta^{2}\pars{3}:\ {\LARGE ?}}$.
\begin{align} I & \equiv \bbox[10px,#ffd]{\int_{0}^{\infty}\ln^{2}\pars{x} \ln\pars{1 + x}\ln^{2}\pars{1 + {1 \over x}} \,{\dd x \over x}} \\[5mm] & = \int_{0}^{\infty}\ln^{2}\pars{x} \ln\pars{1 + x} \bracks{\ln\pars{1 + x} - \ln\pars{x}}^{\, 2} \,{\dd x \over x} \\[5mm] & = \int_{1}^{\infty}\ln^{2}\pars{x - 1} \ln\pars{x} \bracks{\ln\pars{x} - \ln\pars{x - 1}}^{\, 2} \,{\dd x \over x - 1} \\[5mm] & = \int_{1}^{0}\ln^{2}\pars{{1 \over x} - 1} \ln\pars{1 \over x} \bracks{\ln\pars{1 \over x} - \ln\pars{{1 \over x} - 1}}^{\, 2}\ \,{-\dd x/x^{2} \over 1/x - 1} \\[5mm] & = -\int_{0}^{1} {\bracks{\ln\pars{1 - x} - \ln\pars{x}}^{\, 2} \ln\pars{x}\ln^{2}\pars{1 - x} \over x\pars{1 - x}}\,\dd x \\[8mm] & = -\int_{0}^{1} {\ln\pars{x}\ln^{4}\pars{1 - x} \over x\pars{1 - x}} \,\dd x + 2\int_{0}^{1} {\ln^{2}\pars{x}\ln^{3}\pars{1 - x} \over x\pars{1 - x}} \,\dd x \\[2mm] & - \int_{0}^{1}{\ln^{3}\pars{x}\ln^{2}\pars{1 - x} \over x\pars{1 - x}}\,\dd x \\[8mm] & = -\int_{0}^{1} {\ln\pars{x}\ln^{4}\pars{1 - x} \over x}\,\dd x -\int_{0}^{1} {\ln^{4}\pars{x}\ln\pars{1 - x} \over x}\,\dd x \\[2mm] & + 2\int_{0}^{1} {\ln^{2}\pars{x}\ln^{3}\pars{1 - x} \over x}\,\dd x + 2\int_{0}^{1} {\ln^{3}\pars{x}\ln^{2}\pars{1 - x} \over x}\,\dd x \\[2mm] & - \int_{0}^{1}{\ln^{3}\pars{x}\ln^{2}\pars{1 - x} \over x}\,\dd x - \int_{0}^{1}{\ln^{2}\pars{x}\ln^{3}\pars{1 - x} \over x}\,\dd x \\[8mm] & = -\int_{0}^{1} {\ln^{4}\pars{x}\ln\pars{1 - x} \over x}\,\dd x + \int_{0}^{1} {\ln^{3}\pars{x}\ln^{2}\pars{1 - x} \over x}\,\dd x \\[2mm] & + \int_{0}^{1} {\ln^{2}\pars{x}\ln^{3}\pars{1 - x} \over x}\,\dd x -\int_{0}^{1} {\ln\pars{x}\ln^{4}\pars{1 - x} \over x}\,\dd x \end{align}
The above integrals are related to derivatives, respect $\ds{\mu}$ and $\ds{\nu}$ with $\ds{\pars{\mu,\nu} \to \pars{0^{+},0}}$, of
\begin{align} \mc{I}\pars{\mu,\nu} & \equiv \int_{0}^{1}{x^{\mu}\bracks{\pars{1 - x}^{\nu} - 1} \over x}\,\dd x \\[5mm] & = \int_{0}^{1}x^{\mu - 1}\pars{1 - x}^{\nu}\,\dd x - \int_{0}^{1}x^{\mu - 1}\,\dd x = {\Gamma\pars{\mu}\Gamma\pars{\nu + 1} \over \Gamma\pars{\mu + \nu + 1}} - {1 \over \mu} \\[5mm] & = {1 \over \mu}\bracks{{\Gamma\pars{\mu + 1}\Gamma\pars{\nu + 1} \over \Gamma\pars{\mu + \nu + 1}} - 1} \end{align} as $$ \int_{0}^{1}{\ln^{m}\pars{x}\ln^{n}\pars{1 - x} \over x} \, \dd x = \lim_{{\large\mu \to 0^{+}} \atop {\large\nu \to 0}}{\partial^{m + n}\mc{I}\pars{\mu,\nu} \over \partial\mu^{m}\,\partial\nu^{n}} $$
$$ \left\{\begin{array}{rcl} \ds{-\int_{0}^{1} {\ln^{4}\pars{x}\ln\pars{1 - x} \over x}\,\dd x} & \ds{=} & \ds{\phantom{-}{8\pi^{6} \over 315}} \\[2mm] \ds{\int_{0}^{1} {\ln^{3}\pars{x}\ln^{2}\pars{1 - x} \over x}\,\dd x} & \ds{=} & \ds{-\,{\pi^{6} \over 105} + 6\,\zeta^{2}\pars{3}} \\[2mm] \ds{\int_{0}^{1} {\ln^{2}\pars{x}\ln^{3}\pars{1 - x} \over x}\,\dd x} & \ds{=} & \ds{-\,{23\pi^{6} \over 1260} + 12\,\zeta^{2}\pars{3}} \\[2mm] \ds{-\int_{0}^{1} {\ln\pars{x}\ln^{4}\pars{1 - x} \over x}\,\dd x} & \ds{=} & \ds{\phantom{-}{2\pi^{6} \over 105} - 12\,\zeta^{2}\pars{3}} \end{array}\right. $$
Note that
$\ds{{8\pi^{6} \over 315} +
\bracks{-\,{\pi^{6} \over 105} + 6\,\zeta^{2}\pars{3}} +
\bracks{-\,{23\pi^{6} \over 1260} + 12\,\zeta^{2}\pars{3}} +
\bracks{{2\pi^{6} \over 105} - 12\,\zeta^{2}\pars{3}} =
\bbx{{\pi^{6} \over 60} + 6\,\zeta^{2}\pars{3}}}$
which is the final answer.
As noted in the comments, the Taylor expansions of $\ln$ do not converge on the entirety of $(0,\infty)$. Instead, let $x\mapsto1/x$ on $(1,\infty)$ to get two integrals on $(0,1)$:
$$I_1=\int_0^1\ln^2(x)\ln(1+x)\ln^2\left(1+\frac1x\right)~\frac{\mathrm dx}x$$
$$I_2=\int_0^1\ln^2(x)\ln\left(1+\frac1x\right)\ln^2(1+x)~\frac{\mathrm dx}x$$
Since $\ln(1+1/x)=\ln(1+x)-\ln(x)$ we can multiply them out as follows:
$$I_1=\int_0^1\ln^2(x)\ln^3(1+x)-2\ln^3(x)\ln^2(1+x)+\ln^4(x)\ln(1+x)~\frac{\mathrm dx}x$$
$$I_2=\int_0^1\ln^2(x)\ln^3(1+x)-\ln^3(x)\ln^2(1+x)~\frac{\mathrm dx}x$$
$$I=I_1+I_2=\int_0^12\ln^2(x)\ln^3(1+x)-3\ln^3(x)\ln^2(1+x)+\ln^4(x)\ln(1+x)~\frac{\mathrm dx}x$$
None of these parts have known solution, so either I made a mistake, this is the wrong approach, or it is possible to continue with this specific combination of coefficients, or perhaps Mathematica's closed form is wrong, though I wouldn't know.