How to make this Dragon Curve?

I think OP may want animation with transition effects. Compare these two effects:
enter image description here
Then translation
enter image description here

Clear["`*"]
cf = Compile[{{M, _Real, 2}, t},
   With[{A = M[[1]], B = M[[2]]}, 
    With[{P = (A + B + t Cross[B - A])/2}, {{A, P}, {B, P}}]], RuntimeAttributes -> Listable
   ];

f[n_] := Flatten[Nest[cf[#, 1] &, {{{0, 0}, {1, 0}}}, Floor@n], Floor@n];
g[n_] := Flatten[cf[f[n], FractionalPart[n]], 1];

Manipulate[Graphics[{Line[f[n]]}, PlotRange -> {{-0.4, 1.2}, {-0.4, 0.7}}], {n, 0, 12}]
Manipulate[Graphics[{Line[g[n]]}, PlotRange -> {{-0.4, 1.2}, {-0.4, 0.7}}], {n, 0, 12}]

Manipulate[
 With[{i = Floor[n], TF = TranslationTransform},
  Graphics[{
    Table[Line[TF[{2 j, 0}]@f[j]], {j, 0, n}],
    Line@If[n - i < 0.5, TF[{4 n - 2 i, 0}]@f[n], TF[{2 i + 2, 0}]@g[2 n - i - 1]]
    }, ImageSize -> 670, PlotRange -> {{-0.2, 13.2}, {-0.5, 0.8}}]],
 {n, 0, 6}]

enter image description here

A simple way to make Dragon Curve is using AnglePath. Define a function that generates points for the Dragon curve:

dragonPTS[k_]:=AnglePath[{Pi/2,-Pi/2}[[1+Nest[Join[#,{0},Reverse[1-#]]&,{0},k]]]]

k is an integer number of iterations. Try it out:

Graphics[Line[dragonPTS[10]]]

enter image description here

Now generate a list of the transitions:

Table[Graphics[Line[dragonPTS[k]]], {k, 1, 10, 1}]

enter image description here

or animate:

Manipulate[Table[Graphics[Line[dragonPTS[k]]], {k, 1, n, 1}], {n, 1, 10}]

enter image description here

To make it a bit cleaner - as in the top animation image - you can try:

Manipulate[
    Row[Table[Graphics[Line[dragonPTS[k]],ImageSize->100{1,1}],{k,1,n,1}]],
{n,1,10,1},Paneled->False,AppearanceElements->None]

Also see numerous interactive apps at Demonstrations Project:

https://demonstrations.wolfram.com/search.html?query=Dragon