How to pivot on multiple columns in Spark SQL?

The solution in the question is the best I could get. The only improvement would be to cache the input dataset to avoid double scan, i.e.

mydf.cache
pivot_udf(mydf,'price','units').show()

Here's a non-UDF way involving a single pivot (hence, just a single column scan to identify all the unique dates).

dff = mydf.groupBy('id').pivot('day').agg(F.first('price').alias('price'),F.first('units').alias('unit'))

Here's the result (apologies for the non-matching ordering and naming):

+---+-------+------+-------+------+-------+------+-------+------+               
| id|1_price|1_unit|2_price|2_unit|3_price|3_unit|4_price|4_unit|
+---+-------+------+-------+------+-------+------+-------+------+
|100|     23|    10|     45|    11|     67|    12|     78|    13|
|101|     23|    10|     45|    13|     67|    14|     78|    15|
|102|     23|    10|     45|    11|     67|    16|     78|    18|
+---+-------+------+-------+------+-------+------+-------+------+

We just aggregate both on the price and the unit column after pivoting on the day.

If naming required as in question,

dff.select([F.col(c).name('_'.join(x for x in c.split('_')[::-1])) for c in dff.columns]).show()

+---+-------+------+-------+------+-------+------+-------+------+
| id|price_1|unit_1|price_2|unit_2|price_3|unit_3|price_4|unit_4|
+---+-------+------+-------+------+-------+------+-------+------+
|100|     23|    10|     45|    11|     67|    12|     78|    13|
|101|     23|    10|     45|    13|     67|    14|     78|    15|
|102|     23|    10|     45|    11|     67|    16|     78|    18|
+---+-------+------+-------+------+-------+------+-------+------+