How to solve this matrix equation
mat = ({{1, x, 3}, {2, 4, 5}, {2, 4, x}});
Select[MatrixRank[mat /. #] == 2 &][Solve[Det[mat] == 0, x, Reals]]
{{x -> 2}, {x -> 5}}
Solutions force exactly one eigenvalue to be zero. So we solve for the condition that an eigenvalue vanish, and check that rank is two.
mat = {{1, x, 3}, {2, 4, 5}, {2, 4, x}};
candidateSols = Flatten[Map[Solve[# == 0, x] &, Eigenvalues[(mat)]]]
(* Out[997]= {x -> 2, x -> 5} *)
Both pass the test:
Map[MatrixRank[mat /. #] &, candidateSols]
(* Out[995]= {2, 2} *)
A not so good answer
Cases[Table[{x, MatrixRank[({{1, x, 3}, {2, 4, 5}, {2, 4, x}})]}, {x, -10, 10, 1/10}], {_, 2}]
gives out
{{2, 2}, {5, 2}}
So the answer is 2 or 5.