How to test if a point is inside of a convex polygon in 2D integer coordinates?
The Ray Casting or Winding methods are the most common for this problem. See the Wikipedia article for details.
Also, Check out this page for a well-documented solution in C.
If it is convex, a trivial way to check it is that the point is laying on the same side of all the segments (if traversed in the same order).
You can check that easily with the dot product (as it is proportional to the cosine of the angle formed between the segment and the point, if we calculate it with the normal of the edge, those with positive sign would lay on the right side and those with negative sign on the left side).
Here is the code in Python:
RIGHT = "RIGHT"
LEFT = "LEFT"
def inside_convex_polygon(point, vertices):
previous_side = None
n_vertices = len(vertices)
for n in xrange(n_vertices):
a, b = vertices[n], vertices[(n+1)%n_vertices]
affine_segment = v_sub(b, a)
affine_point = v_sub(point, a)
current_side = get_side(affine_segment, affine_point)
if current_side is None:
return False #outside or over an edge
elif previous_side is None: #first segment
previous_side = current_side
elif previous_side != current_side:
return False
return True
def get_side(a, b):
x = cosine_sign(a, b)
if x < 0:
return LEFT
elif x > 0:
return RIGHT
else:
return None
def v_sub(a, b):
return (a[0]-b[0], a[1]-b[1])
def cosine_sign(a, b):
return a[0]*b[1]-a[1]*b[0]
The pointPolygonTest function in openCV " determines whether the point is inside a contour, outside, or lies on an edge": http://docs.opencv.org/modules/imgproc/doc/structural_analysis_and_shape_descriptors.html?highlight=pointpolygontest#pointpolygontest
If the polygon is convex, then in C#, the following implements the "test if always on same side" method, and runs at most at O(n of polygon points):
public static bool IsInConvexPolygon(Point testPoint, List<Point> polygon)
{
//Check if a triangle or higher n-gon
Debug.Assert(polygon.Length >= 3);
//n>2 Keep track of cross product sign changes
var pos = 0;
var neg = 0;
for (var i = 0; i < polygon.Count; i++)
{
//If point is in the polygon
if (polygon[i] == testPoint)
return true;
//Form a segment between the i'th point
var x1 = polygon[i].X;
var y1 = polygon[i].Y;
//And the i+1'th, or if i is the last, with the first point
var i2 = (i+1)%polygon.Count;
var x2 = polygon[i2].X;
var y2 = polygon[i2].Y;
var x = testPoint.X;
var y = testPoint.Y;
//Compute the cross product
var d = (x - x1)*(y2 - y1) - (y - y1)*(x2 - x1);
if (d > 0) pos++;
if (d < 0) neg++;
//If the sign changes, then point is outside
if (pos > 0 && neg > 0)
return false;
}
//If no change in direction, then on same side of all segments, and thus inside
return true;
}