If a,b,c are sides of a triangle, prove: $ \sqrt{a+b-c} + \sqrt{b+c-a} + \sqrt{c+a-b} \le \sqrt{a} + \sqrt{b} + \sqrt{c} $
Since $\sqrt{x}$ is concave down, Jensen's inequality tells us that
$ \dfrac 12 ( \sqrt{2x} + \sqrt{2y}) \leq \sqrt{ \dfrac{ 2x + 2y } 2 } = \sqrt{x+y}$.
Summing cyclically gives the desired result.