If $\alpha$ is an acute angle, show that $\int_0^1 \frac{dx}{x^2+2x\cos{\alpha}+1} = \frac{\alpha}{2\sin{\alpha}}.$
Use $1 + \cos \alpha = 2\cos^2 (\frac{\alpha}{2})$
and $\sin \alpha = 2 \sin (\frac{\alpha}{2}) \cos (\frac{\alpha}{2})$
Draw the right triangle to see that $\arctan(\cot(\alpha))=\frac{\pi}{2}-\alpha$
Or you can use this: $$\tan^{-1}{x} - \tan^{-1}{y} = \tan^{-1}\biggl(\frac{x-y}{1+xy}\biggr)$$
I am doing just the calculation part. We have \begin{align*} \frac{1}{1+ \frac{\cos\alpha+\cos^{2}\alpha}{\sin^{2}\alpha}}\times \frac{1 + \cos\alpha}{\sin\alpha} - \frac{\cos\alpha}{\sin\alpha} &= \frac{1}{\sin\alpha} \times \frac{\sin^{2}\alpha}{\sin^{2}\alpha + \cos^{2}\alpha + \cos\alpha} \\ &= \frac{\sin\alpha}{1 + \cos \alpha} \\ &=\frac{ \displaystyle 2 \sin\frac{\alpha}{2}\cdot \cos\frac{\alpha}{2}}{2 \cos^{2}\frac{\alpha}{2}} \\ &=\tan\frac{\alpha}{2} \end{align*}
Now take the inverse and then get the answer.