Implement superoptimizer for addition
Python, 644
A simple recursive equation generator. S
generates an equation that is satisfied iff the list of vars
adds up to total
.
There are some obvious improvements to be done. For instance, there are a lot of common subexpressions that appear in the 15/5 output.
def S(vars, total):
# base case
if total == 0:
return "(" + " and ".join("not " + x for x in vars) + ")"
if total == len(vars):
return "(" + " and ".join(vars) + ")"
# recursive case
n = len(vars)/2
clauses = []
for s in xrange(total+1):
if s > n or total-s > len(vars)-n: continue
a = S(vars[:n], s)
b = S(vars[n:], total-s)
clauses += ["(" + a + " and " + b + ")"]
return "(" + " or ".join(clauses) + ")"
def T(n, total):
e = S(["x[%d]"%i for i in xrange(n)], total)
print "equation", e
print "score", e.count("[")
# test it
for i in xrange(2**n):
x = [i/2**k%2 for k in xrange(n)]
if eval(e) != (sum(x) == total):
print "wrong", x
T(2, 1)
T(5, 2)
T(15, 5)
Generates:
equation (((not x[0]) and (x[1])) or ((x[0]) and (not x[1])))
score 4
equation (((not x[0] and not x[1]) and (((not x[2]) and (x[3] and x[4])) or ((x[2]) and (((not x[3]) and (x[4])) or ((x[3]) and (not x[4])))))) or ((((not x[0]) and (x[1])) or ((x[0]) and (not x[1]))) and (((not x[2]) and (((not x[3]) and (x[4])) or ((x[3]) and (not x[4])))) or ((x[2]) and (not x[3] and not x[4])))) or ((x[0] and x[1]) and (not x[2] and not x[3] and not x[4])))
score 27
equation (((not x[0] and not x[1] and not x[2] and not x[3] and not x[4] and not x[5] and not x[6]) and (((((not x[7] and not x[8]) and (((not x[9]) and (x[10])) or ((x[9]) and (not x[10])))) or ((((not x[7]) and (x[8])) or ((x[7]) and (not x[8]))) and (not x[9] and not x[10]))) and (x[11] and x[12] and x[13] and x[14])) or ((((not x[7] and not x[8]) and (x[9] and x[10])) or ((((not x[7]) and (x[8])) or ((x[7]) and (not x[8]))) and (((not x[9]) and (x[10])) or ((x[9]) and (not x[10])))) or ((x[7] and x[8]) and (not x[9] and not x[10]))) and (((((not x[11]) and (x[12])) or ((x[11]) and (not x[12]))) and (x[13] and x[14])) or ((x[11] and x[12]) and (((not x[13]) and (x[14])) or ((x[13]) and (not x[14])))))) or ((((((not x[7]) and (x[8])) or ((x[7]) and (not x[8]))) and (x[9] and x[10])) or ((x[7] and x[8]) and (((not x[9]) and (x[10])) or ((x[9]) and (not x[10]))))) and (((not x[11] and not x[12]) and (x[13] and x[14])) or ((((not x[11]) and (x[12])) or ((x[11]) and (not x[12]))) and (((not x[13]) and (x[14])) or ((x[13]) and (not x[14])))) or ((x[11] and x[12]) and (not x[13] and not x[14])))) or ((x[7] and x[8] and x[9] and x[10]) and (((not x[11] and not x[12]) and (((not x[13]) and (x[14])) or ((x[13]) and (not x[14])))) or ((((not x[11]) and (x[12])) or ((x[11]) and (not x[12]))) and (not x[13] and not x[14])))))) or ((((not x[0] and not x[1] and not x[2]) and (((not x[3] and not x[4]) and (((not x[5]) and (x[6])) or ((x[5]) and (not x[6])))) or ((((not x[3]) and (x[4])) or ((x[3]) and (not x[4]))) and (not x[5] and not x[6])))) or ((((not x[0]) and (((not x[1]) and (x[2])) or ((x[1]) and (not x[2])))) or ((x[0]) and (not x[1] and not x[2]))) and (not x[3] and not x[4] and not x[5] and not x[6]))) and (((not x[7] and not x[8] and not x[9] and not x[10]) and (x[11] and x[12] and x[13] and x[14])) or ((((not x[7] and not x[8]) and (((not x[9]) and (x[10])) or ((x[9]) and (not x[10])))) or ((((not x[7]) and (x[8])) or ((x[7]) and (not x[8]))) and (not x[9] and not x[10]))) and (((((not x[11]) and (x[12])) or ((x[11]) and (not x[12]))) and (x[13] and x[14])) or ((x[11] and x[12]) and (((not x[13]) and (x[14])) or ((x[13]) and (not x[14])))))) or ((((not x[7] and not x[8]) and (x[9] and x[10])) or ((((not x[7]) and (x[8])) or ((x[7]) and (not x[8]))) and (((not x[9]) and (x[10])) or ((x[9]) and (not x[10])))) or ((x[7] and x[8]) and (not x[9] and not x[10]))) and (((not x[11] and not x[12]) and (x[13] and x[14])) or ((((not x[11]) and (x[12])) or ((x[11]) and (not x[12]))) and (((not x[13]) and (x[14])) or ((x[13]) and (not x[14])))) or ((x[11] and x[12]) and (not x[13] and not x[14])))) or ((((((not x[7]) and (x[8])) or ((x[7]) and (not x[8]))) and (x[9] and x[10])) or ((x[7] and x[8]) and (((not x[9]) and (x[10])) or ((x[9]) and (not x[10]))))) and (((not x[11] and not x[12]) and (((not x[13]) and (x[14])) or ((x[13]) and (not x[14])))) or ((((not x[11]) and (x[12])) or ((x[11]) and (not x[12]))) and (not x[13] and not x[14])))) or ((x[7] and x[8] and x[9] and x[10]) and (not x[11] and not x[12] and not x[13] and not x[14])))) or ((((not x[0] and not x[1] and not x[2]) and (((not x[3] and not x[4]) and (x[5] and x[6])) or ((((not x[3]) and (x[4])) or ((x[3]) and (not x[4]))) and (((not x[5]) and (x[6])) or ((x[5]) and (not x[6])))) or ((x[3] and x[4]) and (not x[5] and not x[6])))) or ((((not x[0]) and (((not x[1]) and (x[2])) or ((x[1]) and (not x[2])))) or ((x[0]) and (not x[1] and not x[2]))) and (((not x[3] and not x[4]) and (((not x[5]) and (x[6])) or ((x[5]) and (not x[6])))) or ((((not x[3]) and (x[4])) or ((x[3]) and (not x[4]))) and (not x[5] and not x[6])))) or ((((not x[0]) and (x[1] and x[2])) or ((x[0]) and (((not x[1]) and (x[2])) or ((x[1]) and (not x[2]))))) and (not x[3] and not x[4] and not x[5] and not x[6]))) and (((not x[7] and not x[8] and not x[9] and not x[10]) and (((((not x[11]) and (x[12])) or ((x[11]) and (not x[12]))) and (x[13] and x[14])) or ((x[11] and x[12]) and (((not x[13]) and (x[14])) or ((x[13]) and (not x[14])))))) or ((((not x[7] and not x[8]) and (((not x[9]) and (x[10])) or ((x[9]) and (not x[10])))) or ((((not x[7]) and (x[8])) or ((x[7]) and (not x[8]))) and (not x[9] and not x[10]))) and (((not x[11] and not x[12]) and (x[13] and x[14])) or ((((not x[11]) and (x[12])) or ((x[11]) and (not x[12]))) and (((not x[13]) and (x[14])) or ((x[13]) and (not x[14])))) or ((x[11] and x[12]) and (not x[13] and not x[14])))) or ((((not x[7] and not x[8]) and (x[9] and x[10])) or ((((not x[7]) and (x[8])) or ((x[7]) and (not x[8]))) and (((not x[9]) and (x[10])) or ((x[9]) and (not x[10])))) or ((x[7] and x[8]) and (not x[9] and not x[10]))) and (((not x[11] and not x[12]) and (((not x[13]) and (x[14])) or ((x[13]) and (not x[14])))) or ((((not x[11]) and (x[12])) or ((x[11]) and (not x[12]))) and (not x[13] and not x[14])))) or ((((((not x[7]) and (x[8])) or ((x[7]) and (not x[8]))) and (x[9] and x[10])) or ((x[7] and x[8]) and (((not x[9]) and (x[10])) or ((x[9]) and (not x[10]))))) and (not x[11] and not x[12] and not x[13] and not x[14])))) or ((((not x[0] and not x[1] and not x[2]) and (((((not x[3]) and (x[4])) or ((x[3]) and (not x[4]))) and (x[5] and x[6])) or ((x[3] and x[4]) and (((not x[5]) and (x[6])) or ((x[5]) and (not x[6])))))) or ((((not x[0]) and (((not x[1]) and (x[2])) or ((x[1]) and (not x[2])))) or ((x[0]) and (not x[1] and not x[2]))) and (((not x[3] and not x[4]) and (x[5] and x[6])) or ((((not x[3]) and (x[4])) or ((x[3]) and (not x[4]))) and (((not x[5]) and (x[6])) or ((x[5]) and (not x[6])))) or ((x[3] and x[4]) and (not x[5] and not x[6])))) or ((((not x[0]) and (x[1] and x[2])) or ((x[0]) and (((not x[1]) and (x[2])) or ((x[1]) and (not x[2]))))) and (((not x[3] and not x[4]) and (((not x[5]) and (x[6])) or ((x[5]) and (not x[6])))) or ((((not x[3]) and (x[4])) or ((x[3]) and (not x[4]))) and (not x[5] and not x[6])))) or ((x[0] and x[1] and x[2]) and (not x[3] and not x[4] and not x[5] and not x[6]))) and (((not x[7] and not x[8] and not x[9] and not x[10]) and (((not x[11] and not x[12]) and (x[13] and x[14])) or ((((not x[11]) and (x[12])) or ((x[11]) and (not x[12]))) and (((not x[13]) and (x[14])) or ((x[13]) and (not x[14])))) or ((x[11] and x[12]) and (not x[13] and not x[14])))) or ((((not x[7] and not x[8]) and (((not x[9]) and (x[10])) or ((x[9]) and (not x[10])))) or ((((not x[7]) and (x[8])) or ((x[7]) and (not x[8]))) and (not x[9] and not x[10]))) and (((not x[11] and not x[12]) and (((not x[13]) and (x[14])) or ((x[13]) and (not x[14])))) or ((((not x[11]) and (x[12])) or ((x[11]) and (not x[12]))) and (not x[13] and not x[14])))) or ((((not x[7] and not x[8]) and (x[9] and x[10])) or ((((not x[7]) and (x[8])) or ((x[7]) and (not x[8]))) and (((not x[9]) and (x[10])) or ((x[9]) and (not x[10])))) or ((x[7] and x[8]) and (not x[9] and not x[10]))) and (not x[11] and not x[12] and not x[13] and not x[14])))) or ((((not x[0] and not x[1] and not x[2]) and (x[3] and x[4] and x[5] and x[6])) or ((((not x[0]) and (((not x[1]) and (x[2])) or ((x[1]) and (not x[2])))) or ((x[0]) and (not x[1] and not x[2]))) and (((((not x[3]) and (x[4])) or ((x[3]) and (not x[4]))) and (x[5] and x[6])) or ((x[3] and x[4]) and (((not x[5]) and (x[6])) or ((x[5]) and (not x[6])))))) or ((((not x[0]) and (x[1] and x[2])) or ((x[0]) and (((not x[1]) and (x[2])) or ((x[1]) and (not x[2]))))) and (((not x[3] and not x[4]) and (x[5] and x[6])) or ((((not x[3]) and (x[4])) or ((x[3]) and (not x[4]))) and (((not x[5]) and (x[6])) or ((x[5]) and (not x[6])))) or ((x[3] and x[4]) and (not x[5] and not x[6])))) or ((x[0] and x[1] and x[2]) and (((not x[3] and not x[4]) and (((not x[5]) and (x[6])) or ((x[5]) and (not x[6])))) or ((((not x[3]) and (x[4])) or ((x[3]) and (not x[4]))) and (not x[5] and not x[6]))))) and (((not x[7] and not x[8] and not x[9] and not x[10]) and (((not x[11] and not x[12]) and (((not x[13]) and (x[14])) or ((x[13]) and (not x[14])))) or ((((not x[11]) and (x[12])) or ((x[11]) and (not x[12]))) and (not x[13] and not x[14])))) or ((((not x[7] and not x[8]) and (((not x[9]) and (x[10])) or ((x[9]) and (not x[10])))) or ((((not x[7]) and (x[8])) or ((x[7]) and (not x[8]))) and (not x[9] and not x[10]))) and (not x[11] and not x[12] and not x[13] and not x[14])))) or ((((((not x[0]) and (((not x[1]) and (x[2])) or ((x[1]) and (not x[2])))) or ((x[0]) and (not x[1] and not x[2]))) and (x[3] and x[4] and x[5] and x[6])) or ((((not x[0]) and (x[1] and x[2])) or ((x[0]) and (((not x[1]) and (x[2])) or ((x[1]) and (not x[2]))))) and (((((not x[3]) and (x[4])) or ((x[3]) and (not x[4]))) and (x[5] and x[6])) or ((x[3] and x[4]) and (((not x[5]) and (x[6])) or ((x[5]) and (not x[6])))))) or ((x[0] and x[1] and x[2]) and (((not x[3] and not x[4]) and (x[5] and x[6])) or ((((not x[3]) and (x[4])) or ((x[3]) and (not x[4]))) and (((not x[5]) and (x[6])) or ((x[5]) and (not x[6])))) or ((x[3] and x[4]) and (not x[5] and not x[6]))))) and (not x[7] and not x[8] and not x[9] and not x[10] and not x[11] and not x[12] and not x[13] and not x[14])))
score 644
I would have made this a comment, but I don't have a reputation. I wanted to comment that the results of Kwon & Klieber (known as the "Commander" encoding) for k=1 have been generalised for k>=2 by Frisch et al. "SAT Encodings of the At-Most-k Constraint." What you're asking about is a special case of the AM-k constraint, with an additional clause to guarantee At-Least-k, which is trivial, just a disjunction of the all variables to the AM-k constraint. Frisch is a leading researcher in constraint modelling, so I would feel comfortable suggesting that [(2k+2 C k+1) + (2k+2 C k-1)] * n/2 is the best bound known on the number of clauses required, and k*n/2 for the number of new variables to be introduced. The details are in the quoted paper, along with the instructions of how this encoding to built. It's fairly simple to write a program to generate this formula, and I think such a solution would be competitive with any other solutions you'll likely find for now. HTH.