Calculate inertia tensors
The inertia tensor is defined as an integral of the following tensor over the body region
vars = {x, y, z};
r2 = IdentityMatrix[3] Tr[#] - # &@Outer[Times, vars, vars];
r2 // MatrixForm
It is very simple to do with integration over a region
Integrate[r2, vars ∈ region]
It can be wrapped in the following function
inertiaTensor[reg_, assum_: {}] :=
Module[{x, y, z, d = RegionEmbeddingDimension[reg], r2, vars},
vars = {x, y, z};
r2 = IdentityMatrix[3] Tr[#] - # &@Outer[Times, vars, vars];
If[d == 2, r2 = r2 /. z -> 0; vars = {x, y}];
If[d == 1, r2 = r2 /. {x -> 0, y -> 0}; vars = {z}];
Integrate[r2, vars ∈ reg, Assumptions -> assum]/
Integrate[1, vars ∈ reg, Assumptions -> assum] //
Simplify];
I assume that the body have a unit mass. I also assume that 2D bodies lie in xy plane and 1D bodies lie on the axes z.
Now we can prepare the following demonstration which corresponds to known list of moments of inertia
gr3d = Graphics3D[{PointSize[0.03], Thickness[0.03],
FaceForm[Opacity[0.5]], Blue, #, Gray, Thickness[0.01],
Line[{-#, #} & /@ IdentityMatrix[3]], Black,
Text @@@ {{x, {1.1, 0, 0}}, {y, {0, 1.1, 0}}, {z, {0, 0, 1.1}}}},
ImageSize -> 150, PlotRange -> 1, Boxed -> False,
SphericalRegion -> False, ViewAngle -> Pi/10] &;
gr2d = gr3d@{FaceForm[Opacity[1]], Texture[#], EdgeForm[None],
Polygon[{{-1, -1, 0}, {1, -1, 0}, {1, 1, 0}, {-1, 1, 0}},
VertexTextureCoordinates -> {{0, 0}, {1, 0}, {1, 1}, {0,
1}}]} &@Rasterize[#, Background -> None] &@
Graphics[{EdgeForm[Blue], FaceForm[{Opacity[0.5], Blue}],
Blue, #}, PlotRange -> 1.01, ImageSize -> 150,
Background -> Transparent] &;
Manipulate[
Row@{type[[1]],
MatrixForm[m inertiaTensor @@ type[[2 ;;]]]}, {type,
Thread[#[[All, 2 ;;]] -> #[[All, 1]]]},
Initialization :> {type = #[[1, 2 ;;]]}] &@{{"Point",
gr3d@Point[{0, 0, 1}], Point[{0, 0, r}], r > 0},
{"Rod", gr3d@Line[{{0, 0, -1/2}, {0, 0, 1/2}}],
Interval[{-a/2, a/2}], a > 0},
{"Circle", gr2d@Circle[], Circle[{0, 0}, r], r > 0},
{"Disk", gr2d@Disk[], Disk[{0, 0}, r], r > 0},
{"Cylinder", gr3d@Cylinder[{{0, 0, -1/2}, {0, 0, 1/2}}, 1/2],
Cylinder[{{0, 0, -h/2}, {0, 0, h/2}}, r], {r > 0, h > 0}},
{"Tetrahedron", gr3d@Tetrahedron[#], Tetrahedron[s #], s > 0} &@
PolyhedronData["Tetrahedron", "VertexCoordinates"],
{"Sphere", gr3d@Sphere[], Sphere[{0, 0, 0}, r], r > 0},
{"Ball", gr3d@Ball[], Ball[{0, 0, 0}, r], r > 0},
{"Cone", gr3d@Cone[{{0, 0, 2/3}, {0, 0, 0}}, 1/2],
Cone[{{0, 0, h}, {0, 0, 0}}, r], {r > 0, h > 0}},
{"Ellipsoid", gr3d@Ellipsoid[{0, 0, 0}, {0.7, 0.5, 0.3}],
Ellipsoid[{0, 0, 0}, {a, b, c}], {a > 0, b > 0, c > 0}},
{"Rectangle", gr2d@Rectangle[-{1, 1}/2, {1, 1}/2],
Rectangle[-{a, a}/2, {a, a}/2], a > 0},
{"Cuboid", gr3d@Cuboid[-{0.4, 0.3, 0.2}, {0.4, 0.3, 0.2}],
Cuboid[-{a, b, c}/2, {a, b, c}/2], {a > 0, b > 0, c > 0}}}
In Mathematica 10.4, MomentOfInertia
is now built-in. So we can compute inertia tensor for named, arbitrary and formula regions. Some examples:
MomentOfInertia[Ball[]]
(* {{(8 Pi)/15, 0, 0}, {0, (8 Pi)/15, 0}, {0, 0, (8 Pi)/15}} *)
reg = DelaunayMesh[RandomReal[1, {20, 3}]]
MomentOfInertia[reg]
(* {{0.0227787, 0.085264, 0.0937136}, {0.085264, 0.0226137,
0.0801547}, {0.0937136, 0.0801547, 0.0183785}} *)