Gaussian reduction of matrices
The gauss
package is specifically designed for this purpose and allows for typesetting even large matrices and the associated Gaussian elimination (or reduction).
Here is a fairly elementary example of Gaussian (or Gauss-Jordan) elimination on a 2x2 matrix:
\documentclass{article}
\usepackage{gauss,amsmath}
\begin{document}
\begin{align*}
& \begin{gmatrix}[p]
1 & 2 \\
3 & 4
\rowops
\add[-3]{0}{1}
\end{gmatrix} \\
\Rightarrow & \begin{gmatrix}[p]
1 & 2 \\
0 & -2
\rowops
\mult{1}{\scriptstyle\cdot-\frac{1}{2}}
\end{gmatrix} \\
\Rightarrow & \begin{gmatrix}[p]
1 & 2 \\
0 & 1
\rowops
\add[-2]{1}{0}
\end{gmatrix} \\
\Rightarrow & \begin{gmatrix}[p]
1 & 0 \\
0 & 1
\end{gmatrix}
\end{align*}
\end{document}
Matrices using the gauss
package are typeset within a gmatrix
environment (an optional parameter specifies the delimiters), while elementary row operations are specified using \mult
, \add
, or \swap
. See the gauss
documentation for more information and refinements.
amsmath
provided the align*
environment, although it was not necessary; a regular array
would also have worked.
read https://archiv.dante.de/DTK/PDF/komoedie_2002_3.pdf, pages 34--40 for an introduction into the package gauss
. The examples should be self explanatory.