Integral with floor function resulting in EulerGamma
This is almost the required one.
Sum[Integrate[1/t - n/t^2, {t, n, n + 1}], {n, 1, Infinity}]
(*1 - EulerGamma*)
The difficulty consists in
FullSimplify[1/t - Floor[t]/t^2, Assumptions -> n > 0 && n \[Element] Integers && t >=n && t < n + 1]
(*(t - Floor[t])/t^2*)
One sees Mathematica is not able to simplify Floor[t]
to n
under the assumptions.
In cases you have problems to determine the integrand depending on n, you can calculate integrals for some n and find formula for the integral with FindSequenceFunction
.
Calculate the difference for n+1 and n and sum up the found formula. Since FindSequenceFunction does not recognize Log, do it in two steps.
tab = Flatten@
Table[{Integrate[(t - Floor[t])/t^2, {t, 1, n + 1}] -
Integrate[(t - Floor[t])/t^2, {t, 1, n}] // Expand}, {n, 1, 8}]
fs1 = FindSequenceFunction[tab /. Log[_] -> 0, n];
fs2 = FindSequenceFunction[Cases[tab, Log[aa_] -> aa, 2], n];
int1 = fs1 + Log[fs2]
(* 1/(-1 - n) + Log[(1 + n)/n] *)
Sum[int1, {n, 1, ∞}]
(* 1 - EulerGamma *)
An other example:
tabx = Flatten@
Table[{Integrate[(Floor[t] - t)/Ceiling[t]^2, {t, 1, n + 1}] -
Integrate[(Floor[t] - t)/Ceiling[t]^2, {t, 1, n}] //
Expand}, {n, 1, 8}]
(* {-(1/8), -(1/18), -(1/32), -(1/50), -(1/72), -(1/98),
-(1/128), -(1/162)} *)
fs1 = FindSequenceFunction[tabx, n]
(* -(1/(2 (1 + n)^2)) *)
Sum[fs1, {n, 1, ∞}]
(* 1/2 (1 - π^2/6) *)