Is R's apply family more than syntactic sugar?
The apply
functions in R don't provide improved performance over other looping functions (e.g. for
). One exception to this is lapply
which can be a little faster because it does more work in C code than in R (see this question for an example of this).
But in general, the rule is that you should use an apply function for clarity, not for performance.
I would add to this that apply functions have no side effects, which is an important distinction when it comes to functional programming with R. This can be overridden by using assign
or <<-
, but that can be very dangerous. Side effects also make a program harder to understand since a variable's state depends on the history.
Edit:
Just to emphasize this with a trivial example that recursively calculates the Fibonacci sequence; this could be run multiple times to get an accurate measure, but the point is that none of the methods have significantly different performance:
> fibo <- function(n) {
+ if ( n < 2 ) n
+ else fibo(n-1) + fibo(n-2)
+ }
> system.time(for(i in 0:26) fibo(i))
user system elapsed
7.48 0.00 7.52
> system.time(sapply(0:26, fibo))
user system elapsed
7.50 0.00 7.54
> system.time(lapply(0:26, fibo))
user system elapsed
7.48 0.04 7.54
> library(plyr)
> system.time(ldply(0:26, fibo))
user system elapsed
7.52 0.00 7.58
Edit 2:
Regarding the usage of parallel packages for R (e.g. rpvm, rmpi, snow), these do generally provide apply
family functions (even the foreach
package is essentially equivalent, despite the name). Here's a simple example of the sapply
function in snow
:
library(snow)
cl <- makeSOCKcluster(c("localhost","localhost"))
parSapply(cl, 1:20, get("+"), 3)
This example uses a socket cluster, for which no additional software needs to be installed; otherwise you will need something like PVM or MPI (see Tierney's clustering page). snow
has the following apply functions:
parLapply(cl, x, fun, ...)
parSapply(cl, X, FUN, ..., simplify = TRUE, USE.NAMES = TRUE)
parApply(cl, X, MARGIN, FUN, ...)
parRapply(cl, x, fun, ...)
parCapply(cl, x, fun, ...)
It makes sense that apply
functions should be used for parallel execution since they have no side effects. When you change a variable value within a for
loop, it is globally set. On the other hand, all apply
functions can safely be used in parallel because changes are local to the function call (unless you try to use assign
or <<-
, in which case you can introduce side effects). Needless to say, it's critical to be careful about local vs. global variables, especially when dealing with parallel execution.
Edit:
Here's a trivial example to demonstrate the difference between for
and *apply
so far as side effects are concerned:
> df <- 1:10
> # *apply example
> lapply(2:3, function(i) df <- df * i)
> df
[1] 1 2 3 4 5 6 7 8 9 10
> # for loop example
> for(i in 2:3) df <- df * i
> df
[1] 6 12 18 24 30 36 42 48 54 60
Note how the df
in the parent environment is altered by for
but not *apply
.
Sometimes speedup can be substantial, like when you have to nest for-loops to get the average based on a grouping of more than one factor. Here you have two approaches that give you the exact same result :
set.seed(1) #for reproducability of the results
# The data
X <- rnorm(100000)
Y <- as.factor(sample(letters[1:5],100000,replace=T))
Z <- as.factor(sample(letters[1:10],100000,replace=T))
# the function forloop that averages X over every combination of Y and Z
forloop <- function(x,y,z){
# These ones are for optimization, so the functions
#levels() and length() don't have to be called more than once.
ylev <- levels(y)
zlev <- levels(z)
n <- length(ylev)
p <- length(zlev)
out <- matrix(NA,ncol=p,nrow=n)
for(i in 1:n){
for(j in 1:p){
out[i,j] <- (mean(x[y==ylev[i] & z==zlev[j]]))
}
}
rownames(out) <- ylev
colnames(out) <- zlev
return(out)
}
# Used on the generated data
forloop(X,Y,Z)
# The same using tapply
tapply(X,list(Y,Z),mean)
Both give exactly the same result, being a 5 x 10 matrix with the averages and named rows and columns. But :
> system.time(forloop(X,Y,Z))
user system elapsed
0.94 0.02 0.95
> system.time(tapply(X,list(Y,Z),mean))
user system elapsed
0.06 0.00 0.06
There you go. What did I win? ;-)
...and as I just wrote elsewhere, vapply is your friend! ...it's like sapply, but you also specify the return value type which makes it much faster.
foo <- function(x) x+1
y <- numeric(1e6)
system.time({z <- numeric(1e6); for(i in y) z[i] <- foo(i)})
# user system elapsed
# 3.54 0.00 3.53
system.time(z <- lapply(y, foo))
# user system elapsed
# 2.89 0.00 2.91
system.time(z <- vapply(y, foo, numeric(1)))
# user system elapsed
# 1.35 0.00 1.36
Jan. 1, 2020 update:
system.time({z1 <- numeric(1e6); for(i in seq_along(y)) z1[i] <- foo(y[i])})
# user system elapsed
# 0.52 0.00 0.53
system.time(z <- lapply(y, foo))
# user system elapsed
# 0.72 0.00 0.72
system.time(z3 <- vapply(y, foo, numeric(1)))
# user system elapsed
# 0.7 0.0 0.7
identical(z1, z3)
# [1] TRUE