Laguerre Polynomials
Python 2, 53 bytes
f=lambda n,x:n<1or((2*n-1-x)*f(n-1,x)-~-n*f(n-2,x))/n
Try it online!
Wolfram Language (Mathematica), 9 bytes
LaguerreL
Try it online!
Jelly, 11 bytes
cŻ÷Ż!$ƲṚḅN}
A dyadic Link accepting \$n\$ on the left and \$x\$ on the right which yields \$L_n(x)\$.
Try it online!
How?
This makes the observation that
\$L_n(x)=\sum\limits_{k=0}^{n}{n\choose k}\frac{(-1)^k}{k!}x^k=\sum\limits_{k=0}^{n}{(-x)^k}\frac{n\choose k}{k!}\$
which is the evaluation of a base \$-x\$ number with n+1 digits of the form \$\frac{n\choose k}{k!}\$.
cŻ÷Ż!$ƲṚḅN} - Link: n, x
Ʋ - last four links as a monad - f(n):
Ż - zero-range (n) -> [0, 1, 2, ..., n]
c - (n) binomial (that) -> [nC0, nC1, nC2, ..., nCn]
$ - last two links as a monad - g(n):
Ż - zero-range (n) -> [0, 1, 2, ..., n]
! - factorial (that) -> [0!, 1!, 2!, ..., n!]
÷ - division -> [nC0÷0!, nC1÷1!, nC2÷2!, ..., nCn÷n!]
Ṛ - reverse -> [nCn÷n!, ..., nC2÷2!, nC1÷1!, nC0÷0!]
} - use the chain's right argument for:
N - negate -> -x
ḅ - convert from base (-x) -> -xⁿnCn÷n!+...+-x²nC2÷2!+-x¹nC1÷1!+-x°nC0÷0!