largest sum of contiguous subarray No Larger than k
I was influenced by the classic solution mentioned in the question. This problem can be simply solved by an o(n^2) solution:
private int maxSumSubArray(int[] a , int k){
int max = Integer.MIN_VALUE;
for(int i=0;i<a.length;i++){
int tsum = 0;
for(int j=i;j<a.length;j++){
tsum += a[j];
if(tsum <= k) max=Math.max(max,tsum);
}
}
return max;
}
This is an o(nlogn) solution referred to https://www.quora.com/Given-an-array-of-integers-A-and-an-integer-k-find-a-subarray-that-contains-the-largest-sum-subject-to-a-constraint-that-the-sum-is-less-than-k
private int maxSumSubArray(int[] a , int k){
int max = Integer.MIN_VALUE;
int sumj = 0;
TreeSet<Integer> ts = new TreeSet();
ts.add(0);
for(int i=0;i<a.length;i++){
sumj += a[i];
if (sumj == k) return k;
Integer gap = ts.ceiling(sumj - k);
if(gap != null) max = Math.max(max, sumj - gap);
ts.add(sumj);
}
return max;
}