Morphing between two functions

You might be interested in the approach with optimal transport.

Let $F(x)=\int_{-\infty}^x f(y)\,dy$ and $G(x)=\int_{-\infty}^x g(y)\,dy$ be the repartition functions. Then $T(x)=G^{-1}\bigl(F(x)\bigr)$ is the optimal transport map from $f$ to $g$. The map $T_t(x)=(1-t)x+tT(x)$ is the displacement geodesic, so that the intermediate densities are given by $(T_t)_\#f$.

f[x_] := Exp[-(x + 3)^2]
g[x_] := 1/2 Exp[-(x - 3)^2/4]
F[x_] = Integrate[f[x], {x, -\[Infinity], x}];
G[x_] = Integrate[g[x], {x, -\[Infinity], x}];
Ginv[q_] = InverseFunction[G][q];
T[t_, x_] = (1 - t) x + t Ginv[F[x]] // Simplify;
dT[t_, x_] = D[T[t, x], x] // Simplify;
ParametricPlot[Evaluate@Table[
   {T[t, x], f[x]/dT[t, x]}, {t, 0, 1, .1}],
   {x, -10, 5}, PlotRange -> All, AspectRatio -> 1/2]

enter image description here

In the case of Gaussians, as in your example, the interpolation is still Gaussian, and the explicit formula can be found here or here or here...


Clear["Global`*"]

f[x_] := Exp[-(x + 3)^2]
g[x_] := 1/2 Exp[-(x - 3)^2/4]

Treating f and g as unnormalized distributions

distf = ProbabilityDistribution[f[x],
   {x, -Infinity, Infinity}, Method -> "Normalize"];

distg = ProbabilityDistribution[g[x],
   {x, -Infinity, Infinity}, Method -> "Normalize"];

disth = TransformedDistribution[(x + y)/2,
   {x \[Distributed] distf, y \[Distributed] distg}];

data = RandomVariate[disth, 1000];

h[x_] = Integrate[f[x] + g[x], {x, -Infinity, Infinity}]*
  PDF[EstimatedDistribution[data,
    NormalDistribution[m, s]], x]

(* 1.81073 E^(-0.819682 (0.0440864 + x)^2) *)

Plot[{f[x], g[x], h[x]}, {x, -10, 10},
 PlotRange -> All,
 PlotLegends -> Placed["Expressions", {.75, .6}]]

enter image description here

EDIT: Or for a zero mean

h[x_] = Integrate[f[x] + g[x], {x, -Infinity, Infinity}]*
  PDF[EstimatedDistribution[data,
    NormalDistribution[0, s]], x]

(* 1.81039 E^(-0.819382 x^2) *)

Plot[{f[x], g[x], h[x]}, {x, -10, 10},
 PlotRange -> All,
 PlotLegends -> Placed["Expressions", {.75, .6}]]

enter image description here