Pandas convert datetime with a separate time zone column
Here is a vectorized approach (it will loop df.time_zone.nunique()
times):
In [2]: t
Out[2]:
datetime time_zone
0 2016-09-19 01:29:13 America/Bogota
1 2016-09-19 02:16:04 America/New_York
2 2016-09-19 01:57:54 Africa/Cairo
3 2016-09-19 11:00:00 America/Bogota
4 2016-09-19 12:00:00 America/New_York
5 2016-09-19 13:00:00 Africa/Cairo
In [3]: for tz in t.time_zone.unique():
...: mask = (t.time_zone == tz)
...: t.loc[mask, 'datetime'] = \
...: t.loc[mask, 'datetime'].dt.tz_localize(tz).dt.tz_convert('UTC')
...:
In [4]: t
Out[4]:
datetime time_zone
0 2016-09-19 06:29:13 America/Bogota
1 2016-09-19 06:16:04 America/New_York
2 2016-09-18 23:57:54 Africa/Cairo
3 2016-09-19 16:00:00 America/Bogota
4 2016-09-19 16:00:00 America/New_York
5 2016-09-19 11:00:00 Africa/Cairo
UPDATE:
In [12]: df['new'] = df.groupby('time_zone')['datetime'] \
.transform(lambda x: x.dt.tz_localize(x.name))
In [13]: df
Out[13]:
datetime time_zone new
0 2016-09-19 01:29:13 America/Bogota 2016-09-19 06:29:13
1 2016-09-19 02:16:04 America/New_York 2016-09-19 06:16:04
2 2016-09-19 01:57:54 Africa/Cairo 2016-09-18 23:57:54
3 2016-09-19 11:00:00 America/Bogota 2016-09-19 16:00:00
4 2016-09-19 12:00:00 America/New_York 2016-09-19 16:00:00
5 2016-09-19 13:00:00 Africa/Cairo 2016-09-19 11:00:00