Reference request: proofs of integrals presented in Erdélyi's *Table of Integral Transforms*

Titchmarsh’s Fourier integrals (1937, 7.6.4) has proof and attribution to Ramanujan.


Another approach appears as a comment on your question, so this is just a rip-off trying to make things tidier but surely there are other ways to Titchmarsh and this to prove it

$ \int_{\mathbb{R}}\frac{dx}{\Gamma(\alpha+x)\Gamma(\beta-x)}\\ =\frac{1}{\Gamma(\alpha+\beta-1)}\int_{\mathbb{R}}\frac{\Gamma(\alpha+\beta-1)dx}{\Gamma(\alpha+x)\Gamma(\beta-x)}\\ =\frac{1}{\Gamma(\alpha+\beta-1)}\int_{\mathbb{R}}\frac{(\alpha+\beta-2)!dx}{(\alpha+x-1)!(\beta-x-1)!}\\ =\frac{1}{\Gamma(\alpha+\beta-1)}\int_{\mathbb{R}}\binom{\alpha+\beta-2}{\alpha+x-1}dx\\ =\frac{1}{\Gamma(\alpha+\beta-1)}\int_{\mathbb{R}}\frac{1}{2\pi i}\oint_{|z|=1}\frac{(1+z)^{\alpha+\beta-2}}{z^{\alpha+x}}dzdx\\ =\frac{1}{\Gamma(\alpha+\beta-1)}\oint_{|z|=1}\frac{(1+z)^{\alpha+\beta-2}}{z^{\alpha}}\frac{1}{2\pi i}\int_{\mathbb{R}}z^{-x}dxdz\\ =\frac{1}{\Gamma(\alpha+\beta-1)}\int_{-\pi}^{\pi}\frac{(1+e^{i\theta})^{\alpha+\beta-2}}{e^{i(\alpha -1) \theta}}\frac{1}{2\pi }\int_{\mathbb{R}}e^{-i\theta x}dxd\theta\\ =\frac{1}{\Gamma(\alpha+\beta-1)}\int_{-\pi}^{\pi}\frac{(1+e^{i\theta})^{\alpha+\beta-2}}{e^{i(\alpha -1) \theta}}\delta(-\theta)d\theta\\ =\frac{1}{\Gamma(\alpha+\beta-1)}\int_{-\pi}^{\pi}\frac{(1+e^{i\theta})^{\alpha+\beta-2}}{e^{i(\alpha -1) \theta}}\delta(\theta)d\theta\\ =\frac{1}{\Gamma(\alpha+\beta-1)}\frac{(1+e^{i0})^{\alpha+\beta-2}}{e^{i(\alpha -1) 0}}\\ =\frac{2^{\alpha+\beta-2}}{\Gamma(\alpha+\beta-1)} $