Row-wise average for a subset of columns with missing values
Alternative - using iloc (can also use loc here):
df['avg'] = df.iloc[:,0:2].mean(axis=1)
You can simply:
df['avg'] = df.mean(axis=1)
Monday Tuesday Wednesday avg
Mike 42 NaN 12 27.000000
Jenna NaN NaN 15 15.000000
Jon 21 4 1 8.666667
because .mean()
ignores missing values by default: see docs.
To select a subset, you can:
df['avg'] = df[['Monday', 'Tuesday']].mean(axis=1)
Monday Tuesday Wednesday avg
Mike 42 NaN 12 42.0
Jenna NaN NaN 15 NaN
Jon 21 4 1 12.5
Resurrecting this Question because all previous answers currently print a Warning.
In most cases, use assign()
:
df = df.assign(avg=df.mean(axis=1))
For specific columns, one can input them by name:
df = df.assign(avg=df.loc[:, ["Monday", "Tuesday", "Wednesday"]].mean(axis=1))
Or by index, using one more than the last desired index as it is not inclusive:
df = df.assign(avg=df.iloc[:,0:3]].mean(axis=1))